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Chapter One

Int roduction

As network communications bec me [aster and cheaper it becomes more practical flor a

single Computer. or node. in a distribUed comput11ing network to maintain only tile resourices

that it canl afford to dedicate, and t( obtain all other resou icS that it ma1'1' need hfrom other

nodes that. provide them thirough th - netxx ork. In thiis "xay, the net xx ok pro' ides thle benefit

of economy of scale through sharill, ,. 1 .ong, term storag aiiirint inc" (10 icS ii1c examples

Of resourNcs that mia be shared throughlout the network. 'I he noIdes that prov()ide thle

resources are called servers while thle nodes that share and utiliie these resom-res are called

clen is.

Swallow 1161, being developed at M.I.T.. is an integrated system of serx ers that provides

reliable. secur and efflicint storage for1 clients throughout a network. Thle components of

Swvallow are repositories, authentication servers and brokers. A re/)osiforY is a server that

provides very reliable storage for client data in Swallow. It is a processor that is connected

to a configuration of stora ge dev-ices. An authentica tion server acts as intermediary to ensure

thait all communications within Swvallow are secure. A broker is a module in the client node

that acms as an interpreter for client requests. It mediates interactions between the clients

and servers in Swallow. Figure 1-1 shows the general configuiration oh Swallow in

relationship ito its clients.

Swallow has severaml basic features. First, it provides extremecly reliable storage. Thus, the

client!-; to perform any number of accesses (read and wvrite) onl an arbitrary set of objects asprbblt thtaycinabet ilee els s ertr.ScnSalx ube h

single. indivx'isi ble (atomic) operation. Third. Swallowv protectSA all objcts from11 unauLthorized

1Fhe .,wh c flIcatiln sciw is no10 d irecilk retClcu t to this Ilis i so~ it Ml nt oli he di scus,,ed Ii x Iither. Atl
fulure 1ccric, 14) 1C comple)~'n.I o/Smallm InctIlde only brokis aiid repositoies.

10
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access. using encryption-based nehanisnls. Fourth, Swallow, provides a uniform interface

for accessing the objects, which may be distributed over a local node and/or several remote

repositories. In effect. the clients can specify where they would like each object to be stored,

but need not remcmber the location in order to access the ohject. Finally, Swallow supports
objects of any size, and in particular, vcr, small objects. Thus. Svallow gives lie client

Ilexibility in strtucturing and inanaging its data, since each object is treated as a separate

entity with respect to protection and sy nchroniiaion as well as % ith respect to storage and

retrieval.

In order to provide these teatures. S\hallow must ilesere consistency etween all related

client data (which may be distributed oer sCeeral nodes). For CXepll)le, Sulppose an

appointifent scheduling system is a client of Swallow thai seis up meetings between people

by reserving time slots in their pcrsonal calendrs. Regardlcss of where these )ersonal

calendars are stored (i.e.. in one or mo-e repositoriCs). Swallow Illust ensure that tile

calendars are always consistent with one another. In other words, if, as the scheduler is

modifying 2 calendars (in order to set up a meeting), the repository in which one (or both)

calendar is stored crashes. then either both calendars should reflect the appointment or else

neither calendar should reflect the appointment. 'lhe state of these 2 calendars, in which

only one of them is modified, is internal to Swallow and should never be exposed to the

appointment scheduler or any other client that accesses the calendars. Swallow ensures this

consistency between related client data by providing a standard set of protocols for all

interactions between the brokers and servers, as well as for global recovery,. The underlying

mechanisms for these protocols and global recovery are based on those developed by Reed

[14, 15].

In order for the Swallow protocols and global recovery to be effective, all repositories in

Swallow must survive both their own failhres and those of other Swallow nodes. This

mcans that all data stored wihin a repository must remain internally consistent, regardless

of any errors that may occur due to an internal failure or the failure of another node. For

example, within the repository, an object consists of an object header plus the object, itself.

In order to update a single object, the repository must modify both the object header and

12



tihe object as well as a Comnlit iCord, %h ich is used to synchronize accesses to the object.

Ilhus, ccn if the repository crashes in the midst of' making these changes. the repository

must recover itself' to a stale in %Nhich tihe object header. object and conlmit record are

consistent with each other. that is. either the state before the update began or the state after

[Ile Ul)date is Compl)ICted. In addi ti)n. the internal recovery of the repositor in ust support

the global recoxcr\ mecha isins dcelopcd by lRced [1-. 15]. \Nhich rcstoie all related client

objects colmit records to a COllsistclt state.

lhis thesis pro\ ides (he internal nechanisms by %Nhich the repositor restores its internal

stalt and integrates these intcrnml Iechalisnis with the general recovery mechanisns of

Swallo\% in order to sho\% that the r covery of the repository is complete.

1.1 Related Work

WI:S [191, Juniper [61 and CFS [11 are other systems that are comparable to Swallow.

-ach system providles long-term storage in a distributed computing network, but does not

have all of the same basic features as Swallow (described on page 10).

WFS was designed to be a more primitive storage system than Swallow. It is a single file

server as opposed to a collection of one or more of various types of servers, as in Swallow.

Unlike Swallow, WFS does not provide a uniform interface to any data distributed over the

local node and the remote file server nor does it restrict access to the data and ensure secure

communications. Also, Swallow provides access to objects ofany size that do not have to be

viewed as standard "files", and provides atomic actions for any arbitrary set of these objects.

WFS, on the other hand, provides page level access to iles and only ensures atomicity of

operations that are executed on a single page (although a system that runs at the client node

to provide atomic actions Ibr multiple page and multiple file operations can coexist with

wis [i 11).

Juniper is more like Swallow in that it is a dislributed data storage system (consists of

more than one data storage server) and enables [he client to perbrm atomic actions over

multiple data objects at multiple sites, but it still does not have all of the features that

13
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Swallow has. First. Juniper does not provide a uniform interface t data distributed over

the local and remote nodes, or to any other types of servers (cg., authentication server).

rhus. in order to obtain additional but related services, tile client must interlf"ce with a

different system. Note, though. that plans are in the works to make a s.\ stem, the Cedar file

S'SICIll. that uses Jlliper as .1 component in a system of structure similar to Swallow.

Second. although Juniper provides access to arbitrary sequences of 'bytes, it does not

provide atolic actions for multiple arbitrary sequences of' bytes. as does S\\allow. In

Juniper. the smallest unit that can he treated as a separate Cnliily wilh rc.spect to arn atoillic

action. is a page. This means that tomic actions can only he perf rncd .m nmlliple pages

within a ile or throughout several (iles. Ill other words. tvko unIIrelated data unils stored]

within tie same pagc cannot be accessed in differellt atomic actions \e -Ctule(] at [he same

time.

The Carnegie- Mellon Central File S stem project (('FS) is similar it) Swallo in that it is

a collection of \arious types of servers that cooperate in order to prm ide a sin,_c. coherent

system. Also. CFS makes tile location of the data distributed over the local and remote

nodes transparent to the clients, as does Swallov. Hou ever. the types o' servers are not tile

same in CFS as those in Swallow, and furthermore, the cal)ahilities proN ided by each system

as a whole are quite different. The most fundamental dilerence betvecn CFS and Swallow

lies in tile amount of flexibility the client is given for structuring his data. (It is the same

fmdamental difference that exists between Swallow and both WFS and Juniper). Swallow

supports arbitrarily small objects and allows the client to access these objects in whatever

fashion suits tile particular application. ('FS. on the other hand, forces the client to

structure and access his objects within the confines a file system. Thus. Swallow provides

separate protection for every object whereas (,FS only )rovidcs protection for files a whole.

Furthermore, Swallow provides synchroli/ation lbr accesses to any arbitrary set of objects

(lacking any rile structure, within a single file, or within several files) whereas CI.S only

provides synchronization for access to arbitrary sets of objects within a single file.

The only similarities that exist between the internal recovery lIbr the data storage server in

WIS, Junipcr, or CFS, and that described in this thesis for tie Swallovt repository, are that

14
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all of these servers leirlorni their internal operations atomically and maintain any

information that is deemed integral to the recovery p)rocess in atomic stable storage (except

f0r W[S, which does not support any stable storage). In all other respects, the recovery

mechanisms Ibr the S\aillow repository di'ffer from those in tI storage servers of WFS,

Juniper and ('FS. Solmlc noted dif ferences are the i'I)Io%%ing. First, the S%allow recovery

illechanisills that the rclositor y s ilitlial recovcr .chdIiliSIl S llIIISt SL upport are based on

mechanisms de\eloped by Reed [14. 151 ,\Ihcrcas the other sVsicn's global recovery

mcchalisns are based on other inechanisins [8. 5]. Sc-ondl. the S\ alO\,, repository is the

only storage server that uses optical disks as secondary storage. I hus. in Swallow

repositorics, optimi/ations in time efficiency arC madc at the expense of space Cefficiency,

since ph. sical storage is cheap. Finally. the Sk allow repository is the only server With

append only storage. I hese, and other difflerences in the structure and lulction of the

storage servers and the systenls as a whole, lead to different requireients for internal

recovery of the storage servers, thus. resulting in a unique set of internal recovery

mcchanisls fbr the Swallow repository.

1.2 Goals for Repository's Recovery

The repository's internal recovery mechanisms that are presented in this thesis were

designed with certain goals in mind. The first and most important goal was to ensure that

the recovery mechanisms return the repository to a state in which its data (client objects,

commit records, and object headers) are both internally and externally consistent 2 from

both the clients as well as the Swallow components' perspectives. This is such an important

goal because, as stated before, the general Swallow mechanisms and protocols are based on

the assumption that the repositories function properly regardless of Failures.

The second goal was to decreasc the al)parent mcan time to repair by minimizing the

recovery that has to be done immediately after the repository crashes. Since clients store

2 Internal consi;tcncy refer, to the consislency between all related data that is Ffly conained within the

repository. I xtcrnal consistency refIes to all rclaied data that is distributed over several rcpositories.
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information in tile repositories that they require in order to carry on their regular activities,

it is important to minimize the delay that they cperience due to a crash. [he immediate

recovery is miniimized by taking advantage of the flict that most crashes affect only a small

portion of the repository's data. Thus. the reposit(lry restarts as soon as it rcstorCs its global

state and recovers all client data whilc recci% ig and servicing cxternal retluests. In this way.

the repository allows the clients to access the aM'lCtCOed data \0hile it is repairing tile

damaged data.

The final goal was to develop r covery mechanisms that have a minimal effect on the

response time for satisfying indi\ iducal Cq ests, 1abOVe thatM \\ hich is required to per orni tile

request, since the recovery mIechall sinls may be in efiTct %hile the repository is processing
requests. The reponse time for t individual requests is affeclcd most significantly by

colImun ications and disk transfer telay)s since the rpositor) is a simple data storage server

and most of its work involves transferring the data between the disks and tile client nodes.

Since the repository's internal recovery mechanisms have very little need for

communicating with other nodes. the main way in which th11 increase the response time is -

by requiring additional disk accesses. Thus, the recovery nechanisms were designed with

the intention of minimizing tile additional disk accesses that Would affect the response time

for satisfying individual requests.

1.3 Outline of Thesis

In Chapter 2 we describe the general mechanisms and protocols that make Swallow a

reliable data storage system, and we specify the minimunim requirements that individual

repositories must satisfy in order to support this reliability. In addition, wc summarize the

various problems that may affe t Swallow's reliability when one of its nodes crashes.

In Chapter 3 we discuss how the repository structures and accesses the dta, since it is the

data that requires recovery after a crash. In addition, we dcscribe the organization of the

various types of storage in which this data is kept.

In Chapter 4 we present the mechanisms that the repository Ltili/es in order to recover its

16



data after a crash. For each type of data, we describe how a crash can dania-e it, and then,

how the repository implements its recovery. Furthermore, We juIStif y why somne data does

not requirc in), recovery at all.

In Chapter 5 we emaluate thle recovery nmechanisnms with respect to p' rforrnance. We

analyic thle costs of thle recovery mechanisms in terms of their el'ect onl thle repository's

r~esponse time and then Compare these effects with) thle effects that anl alternate set of

fco() CIr) mchlanlismls (that \\Ce coldk ha~ e chosen to tise) would have onl the response time.

FI nall . inl Chapter 6 \-,e look bac ( at our original goals and review thle ;lrategies that are

uscd to ilt'ill thenm. Thcn k e point ouit several areas " here these mechan isnis may requlire

im)pr-OVmcnt and MIV I1 discuss several concepts that canl be generalied and used in other

systems.

17



Chapter Two

Overview of Swallow

Swallow is intended to be a very reliable storage system. Basically. it is a set of protocols

that allow for proper management of data that may distributed over the local node and

several remote repositories. There are various underlying mechanisms that are used in

order to implement these protocols. I hese mechanisms are bascd on tLose lescribed by

Reed [14, 15]. In order lbr these mechanisms and protocols to ensure reliability of the

system as a whole. the repositories themselves must function properly in the face of failures

(both their own, and those of other nodes).

This chapter discusses Swallow is it applies to the repositories. Section 2.1 describes the

mechanisms that are used to implement the atomic action protocol. 1crein, an atomic

action is defined as well as other terms such as object history. pseudoiiine and possibility. In

Section 2.2. descriptions of the atomic action protocol and several other protocols, on top of

which the atomic action protocol is built, are presented. These protocols provide for

reliable interactions between repositories and brokers (the two entities that store and

manage the data for the Swallow clients). Next. Section 2.3 outlincs the minimum

requirements that individual repositories must satisfy in order to support the reliability

characteristics that Swallow intcnds to guarantee. (These requirements provided the

guidelines for developing the repository's recovery mechanisms). Finally, Section 2.4 lists

the general types of problems that can occur when a Swallow node crashes.

18
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2.1 Swallow Mechanisms

h1 Swallow. tile flnctional unit of client data is called an object. Further, the

flundalental requests that a client can submit to Swallow (through a broker) to be

perforimned on an object are:

Create Object: % rites a nc%% objcct into storage

Delete Object: eliminates an obj :ct from storage

Read Object: returns the currclt alue of'an object in storage

Modil' Ohject: assigns a n0 value to an ohject and \% rites it into storage

In addition, a client can submit (through the broker) a series of" these requests to be

performed as a single atomiw action [8. 9. 1H. 171 by bounding the series with Begin Atomic

Action and End Atomic Action requusts.

An atomnic action is a set of operations (requests) that must satisfy die following two

requni rements:

1. failure atomicity requirement - the operations of a single atomic action should
either he performcd to completion or not be performed at all (i.e., aborted if
completion is not possible).

2. concurrency atomiciv requirement - the operations of single atomic action
sho(uld behave as if they are execiled serially " ith respect to the operations of
other atolic actions even though atomic actions may be executed concurrently.

ITo satisfy the failure atomlicity requi renhent. an atomic action is structured so that at some

point the atomic action is committed, which means that it is irrevocably required to finish.

In other words. if there is a failure belore the commit point and not all of the component

requests have been satisfied then. upon recovery, the system's state must be backed up to

the state it had bellore any of the requests were fulfilled. On the other hand, if the failure

()'curs after the coiiinit point. t0,-n any of the component requests that were not satisfied

bel'orc the tfilure occurred must be satislicd upon recovery. To satisfy the concurrency

requirements, it is arranged so that the intermediate state of the system (Iiring the execution

of' an atomic action (when only sonic but iot all of the requests hae been satisfied) is
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protected from any processes perforning a diffierent atomic action.

For example. consider the appointment scheduling system described in the previous

chapter. The system \ould be implemcnted so that the scheduler would request that

Swallow read and update several people's calendars as a single atomic action. Then, even if

one or more of the repositories (containing the calendars to be niodiliel) crashes, the

calendars would either all relcct tile scheduled meeting (il-the crash OCCLr-S after tle Comlit

point) or else none of them would reflect tile meeting (if tile crash occurs before the commit

point). Also, if one or more of thc calendars does not have the refileste I time slot open.

then the appointment scheduler c. n explicitly abort tile atomic action and none of the

calendars would be updated to reflect the ineeting. Inally, if several sLt 11 atomic actions

were exectted sinultancously, and requested the same time slot in se eral people's

calendars, then one of these atomic actions would appear to execute first and thus, succeed

whereas tile other would find that the requested slot was filled.

[he remainder of this section summarizes the mechanisms developed by Rccd [14, 151

that are used in order to implement the atomic actions defined above.

Pseudolines are numbers that are used to assign a total ordering of events in Swallow.

Pseudotinies do not directly correspond to real time. A global clock mechanism supplies a

unique, non-overlapping range of pseudotimes. or pseudotemporal environment, to every

atomic action. Each request that accesses an object is assigned a pseudotinme from the

pseudotemporal environment of the atomic action.

Objects are implemented in the form of object histories. An object history is a sequence

of versions. Each version is a state that the object has assumed at some point in time. See

Figure 2-1. Fach version of an object history is valid fbr a range of pseudotimes. For

example. version B in Figure 2-1. is valid from psemutotines 5 to 10.
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Pseudotime

1 4 5 10 11 64 65 82

A 6 C D

Figure 2-1: lxample olan Object History

A modipj' request crcales a ncv eCsihi) in the object history. [he I scudotine of the

mnodily request provides the sltrl pseudolime. which is the lower bound Ibr the version's

ranige ol validity. If a version already exists in the object history at the pscudotinie specified

in the modilfy request. then the modily request is denied. For example. a version could not

b created at pseudoii1e 8 in the object history illustrated in Figure 2-1 since version B

exists for that pseudotime.

A read request selects tihe version chat has the largest start pseudotirue less than the

pseudotinle specified in the request. Then, the tipper bound of the version's validity is

extended, if necessary. to include the pseudotime of the read. According to Reed [14, 151,

tile tipper bound of a version is the last pseudotime at which a request read the version.

This means that there can be pseudotimes in the middle of an object history for which no

versions exist. For example, if a modify request wishes to create a version in the object

history shown in [igure 2-1 at pscudotimC 90, then version F would be created with a lower

pseudotiie of validity off90 and no version would exist fbr pseudotirnes 83 - 89. as shown in

Figure 2-2. To simpli fy matters within Swallow. it has been decided not to leave any holes

in an object history [1,11. Therefore, when a ncw version is created at a specific pscudotile.

the previously current \crsions upper psetdotime of validity is extended to the pseudotime

at which the nc\v version is being created. Rfel'crring back to tile previous exaimple, the

upper pscttdotillic of alidity for version I) would be extended to 89, as shown in I:igure 2-3

instead of leaving a hole, as in Figure 2-2.
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Pseudotime

1 4 5 10 11 64 65 82 90

Figure 2-2: Creation of a New Version as Described by Reed

Pseudolime

1 4 5 10 11 64 65 89 90

Figure 2-3: Creation of a New Version in Swallow

An atomic action ensures that a specified sequence of read and modify (as well as create

and delete) requests for one or more objects are performed as an indivisible unit. If any of

the requests are not successfully satisfied, then the atomic action is aborted. Abortions are

made possible by making the versions created by an alomic action tentative until the atomic

action is explicitly committed. These tentative versions are called tokens and are not

readable by other atomic actions. In other words, if some request within an atomic action

attempts to read a token created by another atomic action, then that request % ill be delayed

until the atomic action that create it either commits or aborts. Upon cominiting, the tokens

made by an atomic action bccole versions.

All tokens created by a single atomic action are grouped into a set called a possibility.

When all of the component requests of an atomic action arc satisfied, the atomic action
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('omiik its po ssibi Iit\. Ii his commllittinug coii~ erts all ol tie tokens in to actual 'CriIflS. If,

onl thle other hand. somne of' thle Ieq nestS aIe deniled. then the atomic action aborts its

possibilIit . \\hich deletes thle tokens ioii thle object history.

I'OSSi bilitiCS are iIleinenI~Cted uingi comlmit r'corils that record the Y-tatc of an atomlic

action. Initially. the State is unknown. All tokens in a possibility (or versions. once the

possi bill ty i, omiitted ) COIlail it aiCcCI1ecC (p)oinlter) to the COInI11 mit recd aiatedC %k Ith]

the possibilit\. Tokens are distinguLishedL l'roin versions h\ thle staic of' their commit record.

h\Iell the state of, thle comiminit [-ed(id is changled to connnili'd the token Ibeomne versions

anid Canl be examllinedIh 1 Ith altoi lic actions. Ifr the state or thle commlit reCcord is changed

to tiborwil then tlie tokcns are delcted. Lu -iih er. coii lt rCcords in Iist hav'e timeotts

aIssociated \ithl then~l So thatl if a fl nitlC OCCU is that causes thle comm it reCCORds to neither be

coiiIm mittcd nor1 aborted (ithis conIld happen. Ir example, Mhen a clilent node crashes), then

thlt tokens M ll not bcome permanent fixtum es in objcct hiistories, blocking Future real

operIations Onl that ObjeCt. I'Ossihhi iis enable SwallowN to ensuie that if ani atomic action

cxannot be completed ienl tile State olf the data will appear as if' none of thle component

updates were done.

2.2 Swallow Protocols

Ini order flor Swallo\N reliably to satisfy thle requests suIbmlitted by the clients, brokers and

repositories must interact in an orderly fatshion. '[he broker must inteirpret at client request

and, in turn, generate requests that can be understood and fulfilled by the repositories. The

brokers and repositories communicate their needs to each other by sending and receiving

messages. \fliich contain either requesis or responses to somne request. Swallow provides

Standard protocols lbOr sending and receiving these requests and responses under normal

circumstances. In addition, these S\% allow protocols specify provisional actions thalt should

be taken if thle status of communications between two nIodes is disrupted by at crash of one

or these nodes.

[he Swallow Message Ilrotocol (or SMP)) described in Section 2.2.1, prox ides for the
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reliable transport of the messages through the network by detecting transmission errors that

may ccur. The request/response protocol, discussed in Section 2.2.2. provides a guarantee

to the requestor that its request has been received and Iulfilled. The atomic action protocol,

discussed in Section 2.2.3 ensures global consistency of the data distributed over more than

one node as well as ensuring that atomic actions bchave as if they are executed serially.

2.2.1 Swallow Message Protocol

Every Svallow message is sent Ihrough the network in the forni of on( or more packets.

Each packet has a sequence number that indicates which part of the mes ;age it contains so

that the complete message can be reconstructed at the rcceiving node. Swallow Message

Protocol. SMP, is a very simple protocol that specifies exactly how node A, fbr example.

must send the packets of a message to node [3. The protocol is as fbllows:

1. A sends 1st packet of message

2. B sends back a packet indicating that A can send X number of packets more

3. A sends X number of packets

4. B sends back a packet indicating that A can send Y number of packets more

5. A sends Y number of packets

6. etc.

This continues until the entire message is sent. If either node does not hear from the

other one within a reasonable amount of time then it aborts the message and discards any

remaining packets. Notice that this protocol is very simple for single packet messages

because no connection has to be established. Ior multiple packet messages, though, it

allos the receiving node to exert some flow cmtrol so that its buffers don't overflow.

Currently. SMP is built on top of the User l)atagram Protocol (II)Pl) 1121. UI)P doesn't

resequence the packets of a single icssage at the recei ing- no)de nor does it prevent their

duplication. Therefore, SMP is responsible for reordcing them and discarding all

24

- - . I



duplicates so that the rcCC ing nodes do not havc to pcrfornil these tasks. SM l does not

prevent ott of'sequence or duplicate mes.nsage. thotigh. nor does it guarantee delivery of the

messages. these problems are taken care of by the atomic action and request/response

protocols. respectively.

2.2.2 Request/Response Protocol

Since a retlqestor can ret er be certain that its reqLst was received and/or satisfied unless

it ieceix-s a Counfirming rcsponsc [2,. there is an associated response foir eVer request sent in

S\\allo\\. I he rCspolnsC cilher conlfirlms )th(l the del icry alld tlhe fiullilment of the request

or rejects the request. If the reqiestor does not receive a response within a reasonable

almlount of, time then it Call retransInit the original reqlest or abort the tratsnission. The

table in Iigure 2-4 enumerates the various types of requests and associated responses that

can be sent and recei\ed by the repository. The next section describes what actions are

taken wx hen these requests are received.

2.2.3 Atomic Action Protocol

1 he atomic action protocol specifies exactly how the brokers and repositories should

cooperate in order to carry out atomic actions for Swallow clients. The broker manages the

local data. monitors the atomic action as a whole and decides whether to commit or abort

the atomic action. On the other hand, the repository stores and manages the object histories

and commit records. That is, it reads and writes the actual data and carries out the final

phase ofthe atomic action, in which tokens are converted into versions or are deleted.

The objects updated by an atomic action may le entirely contained within a single

repository or distributed throughotit an arbitrary number of them. In order to minillie the

number of external messages that have to be sent to the repositories, committing or aborting

a possibility, each repository that contains tokens whose commit records reside in another

repository, maintains a single commil record representalive Ior each commit record of an

atomic action. A commit record representative contains the state of the atomic action

(tnknown, committed or aborted), as well as the references to any tokens (created by the
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Figure 2-4: Repository Requests and Responses

REQUESTS RESPONSES COMMENTS

I Create-Object Object-Created Response contains uid

of object (OlD)

2Delete-Object Object-Deleted or Can't Delete response indicates

Can't-Delete-Object a synchronization conflict

3. Read-Version Versio i-Value Response contr ins version

valid as of given pseudotime

4. Create-Token Token-Created or Can't-Create-T Ken indicates

Can't-Create-Token a synchroni alion conflict

5. Test-Commit-Record State-Is: Committed or Response contains state of

Aborted commit record

6. Abort-Commit-Record State-Is: Committed or If commit record already

Aborted cornitted then returns

State-Is: Committed

7 Commit-Commit-Record State-Is: Committed or If commit record already

Aborted aborted then returns

State-Is: Aborted

8. Add-Reference Reference-Added Request is sent to

commit-record-representatives

9. State-Is: Committed or Delete-Reference Request sent to broadcast

Aborted final state of commit record.

Response confirms that final

state was encached in commit

record representative
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atomic action) that reside in the same repository in which the commit record representative

is located. Thus, tile actual commit record need only maintain references to each repository

that containS tokens created by the atomic action rather than to each individual token, as

illustrated in Figure 2-5. Furthcr, when a repository has to broadcast the final state of a

comlmit record sO that the tokens can be converted into versions or dcleted fronm their object

histories. it has to send only on1e m1essagC per repository regal'dless or hor Ilmany tokens each

repository contains. Ihen. each repository can act upon all tokens from that atomic action

that are relcerenced by the commit record reprcsentative.

Sections 2.2.3.1 through 2.2.3.6 describe the protocol fior each type f " request that the

client may submit.

2.2.3.1 Begin Atomic Action

When a client begins an atomic action, the broker nust send a message to some

repository, reqtu esting the creation of a commit record. The repository creates it and returns

a response which contains the name of the commit record. Once the broker receives this

conlirmation it can send to any repositories any sequence of create, read, modify or delete

object requests. depending upon the client's needs. All of these subsequent requests must

include the name of the commit record as well as a pseudotime, so that the repositories can

identify the atomic action of which the request is a part and can synchronize all concurrent

accesses to the same objects.

2.2.3.2 Create Object

When a client wishes to create an object, the broker sends a create-object-history request

to the repository. Upon receiving the request, the repository creates all of the internal

structures needed for the object history in storage. Included is a reference to the specified

commit record or its local commit record representative. 3 If neither exists in the repository

3Both the crealion and deletion of objects are also reqests that belong to a possibility, that is. if the atomic
action creating (deleting) the object hails. then the creation (deletion) is not done.
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at that time. then the repository m1just create a representative with the correct reference to

the version and must send an external request to the renlote repository that contains the

commit record. asking it to aid a reference in the commit record to the commit record

representative. Once the local repository receives a response confirming that the reference

has been added then it must return a response to the broker, confirmling the creation of the

object history.

2.2.3.3 Delete Object

When a client w ishes to delete a object. the broker sends a delete-object-history request

to the repository. When the repos'tory receives the request. it checks whether or not any

versions exist flor a pseudotime greater than or equal to the one specified in tile request. If V
any exist, then it returns a negati\c response indicating that tile object cannot be deleted. If

none exist. then tie repositor creates the final version of the object history that marks it as

being deleted, incllding a reference to the commit record (or representative) and returns a

response to the broker that confirms the object history's deletion.

2.2.3.4 Modify Object

When a client wishes to modify an object. the broker generates a create-token request and

sends it to the repository. Upon receiving the request. the repository checks to see if a

version already exists at a pseudotime greater than or equal to the one specified in the

request. If one exists, then it returns a negative response indicating that the token can't be

created at the given pseudotime. If none exists, then it creates tile new token, adds "I

reference to the commit record or representative and returns a response to the broker,

confirming the token's creation.

2.2.3.5 Read Object

When a client wishes to read an object, the broker sends a read-version request to the

repository. Upon receiving the request, the repository must check whether or not the
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version referenced by tile pscudotime in the request is a token, an aborted token, or a

committed version. If it is a committed version or a token that was created by the same

atomic action that sent the read request, then it simply returns that version or token in the

confirmation. On the other hand, if the request is for a token that was creatcd by a different

atomic action than the one that sent the request. then the repository mutist chcck the token's

commit record to see whether or not it has been committed. If so. then the repository must

commit the token, extend its validity time to the pseudohime specified in the read request

and return that version in the response to the broker. Otherwise, if the c mmit record has

been aborted then the repository must abort the token, extend the vaiidity time of the

current version to the pseudotime specified in the broker's reqtCst. and finally, it mUst

return that version in the response to the broker.

2.2.3.6 End Atomic Action

If all of the component requests of the atomic action are confirmed then the broker

finishes the atomic action by sending a commit rcqu[cst to the repoCsitory in which the

commit record is stored. That repository then commits the commit record and returns a

positive response, marking the completion of the atomic action. On the other hand, if the

broker received any rejections to its requests then it may abort the atomic action by sending

an abort reqjest to the repository, which must then abort the commit record and return a

response to the broker, confirming the abortion of the atomic action.

Once the final state of a commit record has been recorded, the repository storing the

commit record must broadcast this state to all of the repositories for which the commit

record has references. When each repository receives the state of'an atomic action it must

encache that state in the commit record representative and return a response indicating that

the its reference can be delcted from the commit record's list of references. When the

commit record has no more references it can be deleted.4

Note. dlt this description of Itc fiat phasesc (It the :t(mic action (that is ca rried out by the repository) has
been simplitied by ignoring the commit rcords of ne-tcd atomic actions. (See tReed78l)
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2.3 Reliability Re, -ments for Individual Repositories

Now that the globai clhanisis and protocols have been described, the two minimum

requirements that individual repositories must satisfy in order to ensure reliability of

Swallow. as a x hole. can be defined is follows. in Sections 2.3.1 and 2.3.2.

2.3.1 Data Integrity

Since the repository stores tile clicnits' objects as well as the commit records that are used

to s. nchroniie access to those obj,:ct, it must protect these objects and commit records

against alny damage. loss, or inconsistency that may occur when it crashes. In other words,

the rcpository nmust protect the integ'ity of all objects and commit records.

In protecting the integrity of the lient data. the repository must do more than just ensure

that this data isn't lost or damaged. It must also ensure that the objects and commit records

are managed properly. ]his means that a crash should not alter the repository in any way

that would cause it to o\crlook the most current version or token of an object history or

create a version at a pseudotime for which a version already exists. It also means that a

crash should not cause a repository to release the value of a token outside the atomic action

in which the token was created.

2.3.2 Atomicity of Requests

In addition to protecting the data integity, a repository must satisfy al requests

atomically. That is. the multiple internal modifications that must be done as part of a single

request, must be done as an indivisible operation. ]This internal atomicity supports the more

general atonlicity guaranteed by Swallow to its clients. In the same way that Swallow

guarantees not to leave client data in an inconsistent state. a repository must guarantee not

to leave its internal data in an inconsistent state.

For example. a version of a large object will span over more tha i one disk page. If the

repository crashes before it writes out all of the pages io the disk and these pages are not

written atomically, then the object history of which the incompliete version is a part will be
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invalid. Thus, upon restarting. the repository must el.sure that the incomplete Ncrsion is not

included in the object history.

As another example, a create-token request invohes both recording the new version and

adding, to the associated conmmit record. a reference to the new version. If these two

internal tasks are not perlornicd atomically then tile Swallow mechanisms for providing

clients with the ability to execuitc a set of reqmIesLs atomically " ill not wock properly, since

the repository will never know whether the token should be conertied to a version or

deleted from tile object history.

2.4 Summary of Problems Caused by Failure of a Swallo u Node

We have seen how Swallow ensures reliable storage of tie data hy prl% iding the client

with the ability to execute atomic actions and by insisting that its repositories satisfy several

recliuirernents. Flefore getting into the details of the repository, let us brielly list tile general

problems that might occur when a Swallow node crashes.

1. Global (or external) inconsistency of data - The related client objects stored
throughout Swallow may not be current with respect to one another. The
atomic action protocol ensures consistency with tile support of tile repositories,
which properly maintain and manage all commit records.

2. Internal inconsistency ofdalta within the repository - The objects. commit records
and other data supporting these objects and commit records may not be
consistent with each other within the repository. I he repository's internal
recovery mechanisms restore internal consistency of the data, as will be
described in this thesis.

3. Out of sequence packets w/in a nessage - Conunnications delays may cause
packets of a message to arrive in a diffecrnt order than which they were sent.
SMI1 rcsequences these packets.

4. RetransmitledlPackei.N u/in a message - A node sending a request nilal retransmit
packets if it thinks that the original packels werc lost. S,'l' discards duplicate
packets.

5. Unconfirned messages - A niessage may not be ackno'., lclged if the receiving
node crashes. The coml)ination of all three protocols and the repo sitory's
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internal recovery mechanisms ensure reco ry of any daiage caused by
unconfirmed messagcs. How they ensure this will be clarified in this thesis.

6. Incomplete messages - A repository may not receive all of the packets of a
message if it or the scnding node crashes. An incomplete message does not get
confirnied so it is rccovered as an tinconfinmed message. I his problem affects
the repository since the tlaha of a large object crsion is written into stable
storage as recei ed, before the complete message is available.

7. Out ofsequence mes.vages - LI)uc to the distribution of the nodes and real time
delays, requests may not be received in the same order that they ar, sent. The
atomic action protocol serializcs all requests by using pseudotime, instead of
arrival order.

8. Rctraitted me.'sages - If a node does not receive a confirmation For a rcquest,
it may retransmit the rectuest. All requests that can be send to the repository are
repeatable: that is. the repository will make the requested modifications in
response to the same request only once (the repository can recognize
retransmitted requests). Upon receiving a retransmitted request, the repository
simply confirms it and does not repeat the modifications that are requested.
I[is thesis will demonstrate how the repository properly handles retransmitted
requests.

This thesis deals directly with problems 2. 5, 6 and 8. More discussion on the other

prohblcns above will found in [14, 15, 16].

33
I.



Chapter Three

Management of Data within the Repository

The repository's data can be cassified as Iollo%,s: object data, commit rccord data,

pending messages data, and data that describes the repository's global state. In order to

understand how tile repository ieco .'elS this data a'ter a crash. it is first tncccssary to explain

the internal Structure and manageenct of these four classes of data as Ncll as the

organi/ation of the storage in which the data is maintained.

Sections 3.1 and 3.2 describe tie object and commit record dita, which consist of

sequences of versions plus a header that contains a rel'erence to the current \ersion. Next,

Section 3.3 discusses the message data, which consists of sequences of packets. Then,

Sction 3.4 briefly describes the global state data. which is a record that describes the statu3

of the repository as a whole.

The remaining sections describe the various forms of secondary storage that the

repository supports as well as their interaction with primary storage. Section 3 5 gives an

overview of the organi/ation of the storage in the repository and then Sections 3.6, 3.7 and

3.8 describe Version Stonge. State Storage. and 'bject Header Storage, respectively.

3.1 Objects

Within the repository. an object is represented by the versions of the object history plus

an object header, which contains a reference to the current \ersion and other useful

information about the object. Figure 3-1 illustrates the internal structure of an object.

rhus, in order to create a token (assuming that no token alrcady exists) the repository

creates a version (ts depicted in Figure 3-1) in storage, and then modilics the object header,

as fi)llows. *fhe value of tie token reference i'; changed from nil to the newly created
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end pseudolime Commit Re;oid 4

OBJELCT III AOER

toes dressi trae1h veof he citrecor refrenef iscane-t1 h

unique idcntilkcr of the tukcni's commit record, and thc end pseudotime value is changed to

the pseudotme at which the token is created. Subsequently. if thc token becomes a ver-sion,

(the repository chanpes the refe~rences within the object header: the vaILue of the current.

version reference is changed to the token*! address in storage, and then the value of the

token reference becomes nil. Alternatively, if the token becomes aborted, then the

repository deletes it by simply changing the valuecs of the token reference and commit

record reference in the object header to nil. Finally, in order to read a version of the object,

thie repository obtains the location of the current version in storage from the object header.
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Since the objects are accessed using the object headers, the repository organiles the

object headers in the fiorm of a hash table, called the object header table. This object header

table will be discussed in more detail in Section 3.8

3.2 Commit Records

Conceptually, a commit record consists of the state of the atomic action that it represents,

and a list of references to the tokens created by that atomic action. Within the repository, a

commit record's structure is similar to that of an object. A commit record '(or commit record

representative) is structured as a threaded sequence of versions. Furthermore, the

repository maintains a hash table, called the commit record table, whose entries contain the

state of the commit record and a reference to the current versions oh the commit records.

Figure 3-2 depicts a commit record after the atomic action's final state has been decided.

Commit Record
Table

o°bjectA objectB obeI abot e
state state

version version

Figure 3-2: Structure of a Commit Record within the Repository
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Wheni the commit rccord is first created, an initial ersion is created. T his version contains

thc unique idti tier of'the commnit record. which is assigned by the repository, and thle state

o1' thle atomlic action. M hich is UNKNOWN. Ini addition, an entry (that points to this

\erSiOii) is created in the comnmit record table. thenl as tokens are created N~ithiin the atomic

acuiou., 0hey are nlot onk l1 iii aded ilitO thle SCqueC1C of\ erSionfi or their Object. but 1are also

thlreaded in to the Se eu Ice of \eIhins of the comi nnt record. As cacti token is Added to thle

con In it record\* list of\ ' esionls. the( Corresponding comnlilit reCcord table entry is modiftied to

re ltr to that token. Si in ail y. \\1I he a remo0te Site aldds a reference to thle commit record. thle

recposiiory Creates a nri'w flli re version. \x ich con tai uS thle uii iqile id's Of thle comm11it

r'ecord and the remote site. and thenf ti readls that version i1t1 h tin m011it reo nd's seq nence

of ersions. I' nail v. M hen thle atoll ic action is committed or aborted. thle repository creates

another cominnt record ersion thai contains the commit record's uid plus the final state.5

Iii order to carr-y Out the final phase of the atomic action. in which all tokens are

con' ete(I into versions Or aborted f'orm thle ob~ject history, the repository modifies thle

ohiec t lleaCIkrS C1lcrrespondinlg to each token ill the commit rCcord's seqeceIIIC Of Versions. to

reflect theC final statuIs ol'these token)s. The rep)ositoryV Starts Withtile mlost current token in

the list (wvhich it accesses through thle commit record table and then the first version which is

tile final state versionl) and when it reaches the initial state version of the commit record, it

deletes thle entry for that Commit record from the commit recordl table.

3.3 Mdessages

The various types of' messages that thle repository can sendl and receive were listed in the

table in [igure 2-4i in Chapter 2. Ofithese. all are single packet messages with thle exception

of crecate-token or- versiol-\aLie mecssages, which may contain large objects that cannot fit

into a single packet. Ini these multiple packet mlcssages. the sender p~laces all of' the

information in thle first packet. ecept for the fragments of the actual value of the object that

-Note thait no ohjcct \ersioti ill e\ er refer io a commiti ten rd (hht is created laic'r than that object versionl.
I is in\ ariamt is used to oiiiecoN ci.. ais \kill he seen iii ( fuaptcr 4.
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do not fit in this first packet. These fragments are the only data that will be contained in the

subsequent packets. Figure 3-3 depicts both a multiple packet create-token message.

SMP Header

Messagell) ' MessagelD MessagelD MessagelD

Packeti Packet! Packet3 Packet4

OlD

ConiRcclD

Pseudohime VALUE VALUE VALUE

VALUE

Swallow Request

Figure 3-3: Structure of a Create-Token Message

Thus, when the repository receives a multiple packet create-token message, it does not

have to wait for all of the packets to arrive before it can start writing the fragments of the

object onto tle disk. Instead, it can write the fragment contained vithin each packet aF the

packet arrives, and then can discard the packet since it has been processed.

3.4 Global State

There is a small amount of data that describes the repository's global state. Most of this

(lata consists of the logical mappings of the various types of storage into the physical

devices. The remaining data consists of values such as the last unique identificr that the

repo sito)ry atssig to an objecl or commit record, and data that describcs certain recovery

events. The nature orthis data will become clearer by the cud of the chapter.
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3.5 Overview of Storage Organization

I he repository supports sc\eral kinds of storage. Two are kinds of tomic stable storage,

one is a kind of careful Aorage. and the remainder of the repository's storage is volatile. See

Figure 3-4.

Stable Careful Volatile

VS X

State X

Cache X

OH-S x _____

Temporay X

Page Bufler X

Figure 3-4: Storage Classification

Atomic stable storage, (henceforth referred to as stable storage), is secondary storage that

we assume will never lose a value stored there. In practice, this means that stable storage

contains multiple copies of these values at all times. These copies are organized so that it is

unlikely that any one failure (such as a disk head crash) will destroy all copies of the same

value. Furthermore. tie repository's stable-storage is atomic because a write to stable

storage fails in only two ways - having made no change or having completed correctly. In

general. the read and write operations on stable storage are time consuming since the

multiple copies must be accessed and checked to be correct. The two types of stable storage

in the repository are characterized as append-only and reusable stable storage. Append-

only stable storage is like a tape since data is always written at the end. Also, no data is ever

overwritten in aPlpend-only stable storage. On the other hand, in reisable stable storage,

modifications made to the same data are rewritten in place.

Careful storage. is simply secondary storage in which there is only a single copy for each

value stored there (not multiple copies as in stable storage). Thus, careful storage has faster
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data access time than stable storage. Generally. the data ill careful storage survives crashes,

but it is not guaranteed to survive any crashes (as is guaranteed in stable storage). However.

in tile repository, the loss of data in careful storage does not cause falilure as long as this loss

can be detected, since the data can be recovered from the data in stable storage.

Finally. volatile storage is primary storagc that is used as a temporary cache lbr [he long

term information stored in stable and careful storage. Volatile storage has a Much faster

access time than either type of secondary storage. but all data that it contains is lost when

the repository crashes.

Thus. all data that is needed to represent the externally visible state of the repository is

stored in stable storage so that if tile repository crashes, none of' this data will be lost. Ihe

versions of the objects and commit records are kept in appcnd-only stalHle storage, called

Version Storage and the global state data is kept in reusable stable storage, called State

Storage.

The rest of the repository's data, which is redundant of information in stable storage or

which does not have to be recovered at all after a crash, is kept in careful or volatile storage.

Since the object header table would be too time consuming to recover in its entirety, it is

kept in careful storage, called Object Header Storage. [hen. if the repository crashes, only a

small part of the table, if any, is lost. Thus, careful storage is used to improve the

repository's performance by eliminating excessive accesses to stable storage while reducing

the cost of recovery that would be required if the data were maintained in volatile storage.

The commit record table, though, is smaller and less dense than the object header table, so it

can be reconstructed much more easily after a crash. Therefore, it is only maintained in

volatile storage. Finally, tie messages that are pending when the repository crashes do not

have to be recovered at all. since they are processed atomically and the protocols allow for

incomplete mesages. Thus. message data is also kept only in volatile storage.

The remaining sections describe in delail the logical mappings of the repository's

secondary storage (Version Storage, State Storage and Object Header Storage) into tihe

physical devices as well as the methods used ito cncachc in volatile storage the data that is

40

. .. ... ...... .



kept in secondary storage,

3.6 Version Storage

The main lorm of stable storage that the repository tP)portS is Ver;ion Storage (VS)

which contains the % ersions ofubjects and commit records as well as two other t) pcS of data,

called checkpoint entries and epoch boundaries. (These checkpoint entries and epoch

boundaries contain data that is used for recovery and will be describcd in Chapter 4).

Abstractl., VS can be \icwcd aIs an infinite, append-only tape. but physica'ly. it consists of"2

sets Of W rite-Once optical diSkSi. Iach set is a backup for the other one in case soome of the

data is destroyed.

Since VS is append-only storage. it is alWays increasing in si/c. Thus, only a fraction of it

can be kept on line. VS is managed in such a way that the current versions of objects and

commit records remain in the poi tion of VS that is online. This online VS consists of the

two or more most current disks ol VS. The most current disk is called the high space and

the oldest is called the low .space Online VS is managed as a circular buffer [SVOB80], as

follows. When the high space is filled up. the current low space disk goes offline and a fresh

disk becomes the new high space. Furthermore, whenever a version is accessed in the low

space. it is copied into the high space. Thus, when the current low space disk goes ofTine,

the version will still remain online.

All data is stored in VS in units called version images. There are 5 different types of

version images: simple, root, fragment, boundary and checkpoint version images. A version

image consists of size, type and data fields, and resides wholly within one page of VS. A

version of an object or commit record that is small enough to lit on a single disk page is

stored as a simple version image, as illustrated in Figure 3-5. However, a version that is

larger than a single disk page needs a supclstructure that points to all of the pieces of the

version that are interspersed throughout several pages. Therefore a large version is stored as

6 Initially. magnetic disks will be used to simulate optical disk. They will be used in a write-once manner,

however.
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a structure consisting of some number of fragmcnt version images. which make tip the

version, plus a root version image, which has pointers to all of the fragments, as illustrated

in Figure 3-5. A large version is written to the disk atomically by writing the root version

image after all fragment version images are written and then, only linking the root into the

appropriate sequence of versions. Thus, fragments of incomplete version images are

ignored since they are unreachable. fmally, boundary and checkpoint version images look

just like simple version images. except for the data field, which consists of an epoch

boundary or checkpoint entry, respectively.

Several version iniagcs may be pa:cked onto a VS page, which is the unit of physical reads

and writes. In order to pack these v'.l'sion images as efficiently as possible. sccral unwritten

VS pages are encachcd in a page briffer in volatile storage (recall that the disks are write-

once only). Since VS is stable storage. it does not return the VS address ofa version image

(i.e., confirm the write to the repository process that initiated the write) until both copies of

the VS page (on which the verison image resides) are written correctly from the buffer onto

the two disks.

An unwritten VS page in the buffer is written out to the disks when either of the

following three conditions holds true:

1. The page isfidl - Once a page is full, there is no need to wait any longer to write
it out since it is only left unwritten in order to pack version images in it as tightly
as possible.

2. The page has been in the buffer for some extended period of time since the first
version image was added to it - Since a repository process cannot confirm
external requests (that modify commit records or objects) until it receives a
confirmation from VS and in turn, VS cannot confirn the write until the VS
page is actually written on the disks. partially full pages are written out to the
disks after a predefined time-out period. In this way. % hen the rcposilory is not
being heavily utiliied. external requests will not remain uncolirl ied Ibr too
long.
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type - simiple
size = size of version image

OlD
Pt s OIr= unique identifier of object
pt ~pt sF starting pseudotime of version

CRref CRref =pointer to version's comrmit record
Versionlief or commit record representative

VersioniRef = pointer to previous version of object

Simnple Version
size

P type =fragment

size

type root size

OID type fragment

ORref

VersionRef

0~-~ size

______________type =fragment

size

type =fragment

Structured Version _________

Figure 3-5: Simple and Structured Versions
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Another unwritten VS page with a higher VS address is full and must be written out to
the disks - This ensures that no version image is written at a lower VS address
than any other version image to which it refers. and thus, preserves the abstract
view of VS as an append-only tape. Ior example, in order for a process to
create a version image. vi2. with a relfercnce in it to another version image, vii, it
has to know ihe VS address 1" vii. Since the process gets that VS address when
VS confirms that vil has been written, then when the process requests that vi2
be written, all pages with VS addresses less than or equal to that of vil will
already have been written on the disk and therelbre vi2 cannot be written in any
olthem (VS disk pages are write once).

II order to actually write a VS page from the buffer, a copy is wri (en to (he same

Aldressed page on each of two disks. After each copy is written out, it is rl2ad hback to make

sure that the correct data was written. 'hen, if a copy was not written co rcctly, it must be

rewritten (and reread). However, it cannot be rewritten on the same disk pa .i bucausc the

disk is write-once. I herclore. if either of the Copies is writtcn incorrectly. then both copics

must be rewritten on another pair of'pages.

In addition to maintaining several unwritten pages in the buffer, several of the most

recently written or read VS pages are also encrached in this page buffer so that if these

encached pages are read again within a short time period, the disks will not have to be

accessed. However. if a process wishes to read a version image on a page that is not in the

bufler. then the disks have to be accessed. as follows. First, one copy is read from the disk

and verified to be correct, using a checksum. It" that copy is correct, then the second copy

does not have to be examined. Oi the other hand, if that copy is incorrect then it must be

recovered from the second copy.

In order to implement this recovery, both copies of the page nmst be rewritten on a new

set of identical disk pages. as is done whcn the write operation 10ils. However, all references

to the version images on a page that has heen recovered in this way would become invalid.

Thus, in order to preserve the validity of these references, the repository maintains a map

from the bad pages to their replacement pages. Then. when a process attempts to access a

version image on a bad page. VS will find the recovered copies of that page, using this map.

Once a page is determined to be bad, it should never be mistaken for a good page. Thtis,
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the pagu muLst be made detectably bad Ibrever. If VS is implemented using optical disks, as

originally Planned. then pages can be nade bad permanently by writing on themn a second

time. obli teratinug anly marginal dat-3. fiowceer. if another type of disk is used, then some

otlier metho1d. SUChI as keeping a table of' had pages. %%ould have to be devised in ordcr to

make pages delectably bad Ibrever.

3.7 State Storage

Fihe 5cc(md 1,0rm1 of, stable stor-a,e that the repositorv supports is cal led State Storage.

h iich ontai us thle data that describes the reposi tory' Vh gl m state. I 'hy sical lN state storage

consist" ()I at mall ount ol'retisal le magnetic disk storage. It is stable duei to the Iatct that

tile elib~ haItte data is dU p1 iCateo at separate locations ()i disk that lnm e independent

probabiIi ties ol' decaN !ng. Ini other words. it is nlot pr-obable that at single Crash Canl destroy

both copies o' thle data]

I hie repository supports State Sto'rage in addition to \VS forw the coimbined reasons that the

loCal6ion ( it'(the global sat(C can not cliange aind \'S is riteC-of]ce only'. It the global state was

kept in VS. then evcrn time it w as modi lied it would he written into a niew location in VS.

I his would mean that \Nhen tile repository was booting itself after a crash, it would not

kno" exactly where to rind this data because it~s location could not be hardwired into the

bootstraupping procedure. BNy supp~orting reusable stable storage, this problem is avoided.

In order to write a State Storage page. each or' the copies is written and then read b~ack (to

verify that the copy was writtenl correctly). I lowever. since writing a State Storage page

overwritcs Oldler copies of thle global state, the copies must be written and read back

sequentially instead of' inl parallel, as in VS. [hen. if the repository crashes in the midst of

writing one o 'py. there %Vill still be another valid cop), from which to recover thle data that is

contained onl that State Storage page. Furthermore, the copies are always written in the

samite order so that if a failure occurs in between writing the two copies (leaving both copies

7 n order rio becwr mvnore rcl i hie. the aci rl~ inmplemn entait in of'Si ate storage mia) keep 3 copies of all data.
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valid but different), the repository wvill know which copy is current.

In order to read a State Storage page, both copies on the disk must be verified to be

correct and identical to one another before allowing any repository processes to examine tlhe

page. If either one is bad, then the bad copy is recovered From the good copy. Further, if

both copies are valid but not identical, then the second copy is recered from the first

copy, which is the current copy. It is not sufficient to veril'y the correctness of' only one

copy, when reading a State Storage page from the disk. because the repository may have

previously crashed before writing te sccond co)y. If tile second copy is no0t subsequently

updated when read, then another w "i(e otfthat State Storage page could fail and damage tile

first copy, leaving no valid copy from which to recover. (The second cops vWould be too far

out of date to be of any use). Thus, when reading a State Storage page, it is necessary to

compare both copies and recover one, if necessary.

Since the global state data is read fairly frequently, it is encached in volatile storage to

eliminate the time consuming accesses to State Storage. Thus, the only time the disk has to

be accessed in order to read tile global state is when the repository first comes into existence,

and then, whenever the repository restarts after a crash. On the other hand. since most of

the State Storage data changes fairly infrequently, if at all, it is kept current in State Storage

(that is, every time it is updated in the cache it is also written onto the disk). ]here are two

values, though, that change too often to be practically kept up to date in State Storage.

Thus, they are kept current in the cache. but are only periodically updated in State Storage.

These wo values are the VS write pointer, which indicates the current end of' VS and the

value of the last unique identifier that the repository assigned to an object or commit record.

The write pointer is only updated in State Storage cvry N"' time its value changes, where N

is a predefined constant. Similarly, the value of the last uid (unique identifier) assigned is

only updated in State Storage every XNh time its value changes, where X is another

predefined constant. The recovery of these two values after a crash will be describcd in the

next chapter.
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3.8 Object Header Storage

Object I leader Storage. or 01IS, is reusable careful storage in N hich the object header

table is maintained. I he repository keeps this table of object headers so that it does not

have to scan sequentially through VS in order to find the versions of objects. An object

header provides direct mappings to the current version and token as well as a rcfbrence to

the token's coimit record.

Ev-en though object headers are not required in order for the repository to function

correctly (tile repository can always resort to a scqucntial search thro igh VS) they are

necessary in order Ifr the repository to tunction j/ficien 11Y. Thcrclbre. the object header

table must be organ iCd so that the object headers are eflicien tly accessible. The two main

alternatives fbr the table structure were a B-tree or a hash table. A non-coalesced chain hash

table similar to the one described in [7] was selected.

This type of hash table was chosen for its simplicity of structure and ease of recovery, as

well as lor its efficient search, insertion and deletion algorithms. The average search time of

the hash table is independent ofthc sie of the ltablc (providing that the table does not get

tooX full) while (he average search time of a B-tree is directly proportional to the logarithm of

the table si/e [7, .4]. Also. the Fundamental unit ol'a linked list in the hash table (a bucket)

contains only a single object header. whereas that of a linked list in the B-tree (a node)

usually contains so me number greater than one. 'fherelbre. there is potential for losing

more information in a lB-tree than in a hash table if a link is broken (e.g., when one of the

fundamental units gets lost or becomes obsolete alter a crash). Finally, it is easier to

characterize the problems that can arise in the hash table as a result of a crash than in a B-

tree. [herefore, the hash table was more easily adaptable to recovering itself in the

backgrou nd as the rcpositiory fulfills requests.

I he basic structure of the hash table is as follows. The O! IS pages are divided into fixed

sie units, each of which can accommodate a single object header. Each of these units is a

bucket in the lush table and is :- niqucly idcntilCd by its OF-IS address. Further, only three

of the object header fields are relevant to the hash table: the OIl), the delete flag and the

hash table link. I he 011) is used as a key in the hash table. Ihius, a m:llhematical function
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is used ito map or hu~h cx ci-N 011) to some bucket in tile table. The bucket to which an

object header hashes "~Ill be ret'erred to as its home bucket. Next, thle delete flag is used to

indicate Mi cther the object heaider is %al id or has been deleted. Finally. the hash table link

is used to create lnked lists of' buckets. ie remaining fields of' thle object heaider are

6-giLI e b thle hash table algorithms.

I %enl tho ughi only~ onle object hecader can occupy a bucket at any givxen time. there exists

more than one object header1 (Or more1 spcificaly. 0il) of an object healder) that hashes to

each bucket in thle table. I hicrelbrt. once a bucket is occupied, aill oiliher object headers that

are added to [he table. %N hose hou~ic bucket is that bucket are placed arbitrarily in other

empi buckets and liniked together.' I'The first bucket in each linked list is the one to which

lli of the object headers in thle othicr buckets hash. i.e., it is their home buLcket. ['lie linked

lists %kxIl be referred to as chains.

I- ire 3 6 illustrates a page in thle hiashJ table to be Used in examples throughout this

thesk. All figures that depIict pa',ges of the hash table xx ill be of thle samei 1,6rm1 but will show

oli the coIntents of thle pages and buckets that are relevant to thle parti1clar example.

T here are fouir pages, A through 1). in thle hash table, each containing live b)uckets. The

object headers haxe Oil )s of' the florin ohN. where N is thle O11) (an integer). Chains are

idenItifiedI by thle address of the home bucket. Also. thle txxo states of the delete flag will be

represented by thle letters V (x ;lid) and 1) (deleted). The remaining rields within tile actual

object header are not relevant to the discussion about thle organ i/ation of OHS, so they will

simply be represented in each bticket as an X mark. [inall . the hash h'ictioii selected for

the exampics in this thesis is 011) modUlo 20.

The three hash table operations are sacil-h, inIsertion,. and dleCItion. The search operation

finds the specified object header in the object header table. [lie insertion01 Operation is used

for adding newly createdI objec headers to the object hecader table. Fina~ly. thle deletion

operat io n simnply eliminates anl object header fro (lite object hecader table.

gibe chi nceo 'C buckets k~ no( uimplecl% ;llbig rdlr. [11C Ilgoit lllil l ifilii-, A 11 hlbcket !iui I looks for a
hike i he i,me pagi is ibic himic biictel siluce ill Ilis \%i a Ilii li, 14- Ml N! LOiNIMCMd SO 111t they
aire tuill contumc~d %iima pai,'e anud t1h1S. (lie aliii (flit papip thm imiust he thm ill xi be minimited.
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FigUre 3-6: A Representative H-ash Table Page

The search algorithm is as follows:

1. Hlash the given object header to tile home bucket, X.

2. If bucket X is empty or contains an object header whose home bucket is not
bucket X (i.e., hashes to another bucket), then terminate unsuccessfully.
Othierwise continue searching down chain X until thc requested object header is
found or the end of the chain is reached.

3. If the end of thle chain is reached then terminate unsuccessfully. Otherwise,
return the obijcct header that was fIbund.
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An example:

Suppose pages C and 1) of tile hash table are as shown in Figure 3-7 and we \N ish to tind

oh37. Oh37 hashes to bucket 17, so we first check to see if bucket 17 contains o1137. Since it

does not, we hash tile object header in bucket 17 to see whethcr bucket 17 is the home

bucket for that object header. Since it is, we follow the links through successive buckets in

chain 17 and find oh37 in bucket 15.

1015 oh37 Xv I*-

116

12 oh42 D 17 ohli7 V

13 183 oh57 D

14 oh82 V 19

Page C Page D

Figure 3-7: Initial State of Pages C and D

50



Ihe insertion algorithm is as Iollows:

1. Perform the search operation oil the object header.

2. If the search terminates successfully, finding an older version of the object
header in) bucket B. then ins"rtI the updte~lcd version of the object header in B
and terminate. Othcr\\ isc. hash the object header to the home bucket, X.

3. i)o one of the following:

a. It' bucket X is empty, or contains a deleted object header whose home
bucket is bucket X. thle simply insert the ne\N object hcader into bucket
X.

1). If bucket X contafins a v ilid object header v hose homC bucket is bucket X,
then check fbr another bucket on chafin N that contains a deleted object
header. II'one c\ists then insert the object header there. Other\ise, find
another available bucket, Y. insert the object header in it, and add it to the
end ofchain X.

c. If bucket X contains an object header whose home bucket is not bucket X,
then bucket X must be part of another chain, beginning with bucket
Z. Thus, it is necessary to move tile object header prescntly in bucket X to
some other bucket. If there is a bucket. i), on chain Z that contains a
deleted object header. then move the object header in bucket X to bucket
1). Otherwise move the object header in bucket X to a free bucket. F, and
reroute chain Z through bucket F, Once tie old object header has been
removed from bucket X. insert the new object header there.

The Ibllowing is an example of three successive insertions that are executed on the hash

table shown in Figure 3-7. Each insertion demonstrates one of the branches that can be

taken in Step 3 of the insertion algorithm.

Suppose we wish to insert oh12 into the hash table. We perform the search through

chain 12 in page C (Figure 3-7) and it terminates unsuccessfully. Next we check the object

header (oh,12) in bucket 12 and discoer that bucket 12 is its lionic btcket but it is marked

deleted. Thereiore we execute step 3a of the insert algorithm by discarding oh42 and

inserting oh12 in its place in bucket 12. See Figure 3-8 lbr the state of page C afler this

insertion is done.
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13

tI 1082 x V

Page C

Figure 3-8: Page C After Oh 12 is Inserted

Now. suppose we wish to insert oh77 into the hash table. We Cal not place it in bucket 17

in page D (Figure 3-7) because it is the home bucket Ir the o)bject header that it contains

and that object header is still valid. Iherelore we look for another bucket already on the

chain that contains a deleted object headcr. Bucket 18 sa isfics these requirements so we

execute step 3b of the in,,crtion algorithm and insert oh77 in bucket 18 in place of oh57.

Figure 3-9 shows what page [) of the hash table looks like after this insertion is done.

Finally. supppose we wish to insert oh34 into the hash table. We have to execute step 3c

of the insertion algorithm because bucket 14 in page C (Figure 3-8) is not the home bucket

for the object header that it contains, oh2. Therefore, we move oh82 to another free

bucket, bucket 10, then reroute chain 12 through bucket 10 and finally, insert oh34 into

bucket 14. See Figure 3-10 for the final state of page C after this insertion is done.

[he deletion algorithm is as follows:

1. Perform the search operation on the object header.

2. If the search terminates unsuccessfully (i.e. the object headcr is not found) then
terminate unsuccesshully. Otlcrwise change the state ofthe bucket in which tie
object headcr was lound to deleted.
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Page D

Figre 3-9: Pige 1) After 0ii77 is Inserted

Page C

Figtire 3-10: Page C After 0104 is Inserted
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An example (using the hashtable shown in Figure 3-9):

Suppose we want to delete oh37. We find it in bucket 15 and simply mark it deleted as

shown in Figure 3-11.

15 oh37 I

16

17 oh117 x V

18 oh77 V

Page D

Figure 3-1I: Page D Aftcr Oh37 is Deleted

When an object header is deleted it is not removed from the bucket in which it resides

nor is the bucket removed from the chain of which it is a part. These actions are delayed

until some time in the future when another object header has to be inserted and an empty

bucket is needed. Then, if the deleted bucket is part of the chain to which the object header

to be inserted belongs, the object header can be inserted into the bucket in place of the

deleted object header without making any changes to tile chain structure. (This was the case

in tile first two examples of insertions). This eliminates the work involved in restructuring

the chain. for both the deletion and insertion algorithms. At worst, if a bucket is needed to

hold another object header that does not belong in the chain of which the bucket is a part,

then the restructuring has to be done anyhow.

The deletion algorithm delays the actual removal o" the object header from object header

table in order to alleviate the following problem. Since pscudotinles do not directly

corresponl to real time. read requests for an object may arrive altcr that object has been

deleted with resipect to real time but before the object has I)cen deleted with respect to
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pseudotinie. Thus, it is hoped that in most cases where this situation arises, by delaying the

actual removal of the object header from OHS, the object header will still be available so

that the repository does not have to scan sequentially through VS in order to find the

appropriate version.

In OTIS, like in VS, the f[udamental unit of read and write is actually a page. Also,

se\eral of the most recentl read and written 01 IS pages are encached in the page buffer in

volatile storage. I lowe\er. unlike in VS. an object header does not have to be written from

the page buffer to tle disk before a ,epository process can confirm an exte nml request. since

data may get damaged c\ en if it has xcn "\ ritten on the disk (OIlS is not stable storage).

Furthermore, the object header table may not be modified atomically. stnce the insertion

algorithmi sometimes modifies object headers on several pages, which are iot written to the

disk in any related order nor all at once. [he object header table is not modified atomically

because many independent processes may be concurrently inserting object headers on the

pages in the buffer and thus. there may be no instant in time (except for when the repository

is idle) when all of the object headers on a page or set of pages are consistent and hence,

atomically writeable.

-1herefore, a page that has been modified in the buffer is actually written out from the

buffer to the disk when one of the following conditions holds true:

1. The page is the least-recenthy- used page in the buffer and another page has to be
brought into the buffer - The OH S page buffer replacement scheme is a Least-
Recently-Used scheme.

2. An extended period of time has passed since the page was modified in the buffer -
This prevents pages that arc frequcntly being accessed from getting too obsolete
on the disk.

3. 7he repository has no more outstanding requests - At this time, all pages in the
buffer that haven't been written to the disk since they were last modified, are
written. [ his brings Of IS to a consistent state.

I lowever, it would be very rare for the repository to crash in the midst of a non-atomic

insertion operation, for the following reasons. First. the insertion algorithm is only executed

when object hc. ders are initially created. Whenever they are modified, the repository
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process requesting the modification would have obtained tie OHS address of the object

header when it read that object header. Thus. unless the object header was moved, the

insertion operation wouldn't have to be executed since the object header could be modified

directly, using the OHS address. Second, most chains are completely contained within a

single page, so even if the insertion algorithms modifies several buckets on the chain, the

object header table will still be updated atomically (each page is written atomically).

Thus. in the few cases where a crash causes the object header table to be updated non-

atomically, the repository's recovery mechanisms will restore consistcncy within the object

header table. This. and all other recovery will be described in the next clpter.
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Chapter Four

Recovery of the Repository

In ordcr to recover i1om a crash, the repository must restore its global state, as well as the

state of' the objects and commit Iecords. to t state that is current \"ith respect to that of

Swallow as a whole. Ol the oth ,r hand. the repository docs not have to recover the

messages that were Iclt pending when it crashed. foir reasons that w ,ill be described in this

chapter.

Since some of the global state da-a consists of recovery in formation that has not yet been

described, tile discussion of' the Jlobal state data's recmcry will be dCfcrrCl until Section

4.3. at which poinit the recovery iniornation will have been described. But first. Sections 4.1

and 4.2, respectively, discuss how tile internal structure of the objects can be damaged by a

crash and also describe the individual recovery mechanisms that are used to implement

their recovery. Then, Section 4.3, presents the recovery manager. wvhich coordinates all

recovery activities. Ib is section explains how the global state data is recovered as well as

how the various recovery mechanisms are integrated into a coherent recovery process that

interl'aces with the processes that are satisling external requests, concurrently. Finally,

Section 4.4 explains why it is unnecessary to recover the pending messages.

4.1 Recovery of Objects

[)ue to the flct that VS is stable storage, and thus, maintains all of its data redundantly,

all object versions that are confirmed to have been written there will be found there after a

crash. Furthermore. all incomplete versions are ignored. Thus VS. in itself, contains the

current slate of all objects. Were it not for a desirc to improve performance, elaborate

recovery mechanisms wotild not have been needed. I lowever, to find the most current

version of an object in VS reqtuires a linear search, which would perform very poorly. To
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overcome this performance problem, the repository accesses the objects' versions in VS

through the object header table, which is maintained in OilS. Since OHlS is only careful

storage, a crash may damage the structure and/or contents of the object header table. Thus,

it is this object header table that must be recovered in order for the objects to be consistent

with the general state of Swallow.9

The various types of structural damage to which OHS is vulnerable are merged. cyclic

and incomplete chains (Section 4.1.1). The repository uses a modificd set of hash table

algorithms (Section 4.1.2) in order t ) detect and correct these damaged chiins. On the other

hand, the contents of the object he-.der table, that is the actual object hcadcrs, get damaged

by becoming lost or obsolete (Section 4.1.3). Most of the inlbrmation contained in these lost V
and obsolete object headers can be recovered from the daa in VS. as dc'scribed in Section

4.1.4. Furthermore, the repositery uses two mechanisms, recovery 'pohs and checkpoint

epochs (Sections 4.1.5 and 4.1.6. respectively), in order to facilitate the recovery of these lost

and obsolete object headers.

4.1.1 Merged and Cyclic Hash Table Chains

When an object header is inserled into the object header table, several buckets may be

modified. If these buckets are not all located on the same disk page then all of these

modifications may not be atomic, since the OHS page buffer management scheme does not

write the separate pages out to the disk in any particular order nor all at once. If it was

possible to write out the pages so that each bucket is written out before any other buckets

closer to the end of the chain then all problems except lbr incomplete chains would go

away. However, since many processes may be concurrently accessing buckets onl diffirent

chains but on the same 01HS pages, it may not be possible to preserve any such order.

Furthermore, since the cost of the OIHS operations (and thus, the repository's response

Note that implementing OIlS as atomic stable sltoragc vtild Inot 'call v all ilte this pIolikim. Ihe lost
obljet hder p n ihiem ld o aildiway hut there tould sill h a pr uldcm tom')i lct lcien ()t IS lldll VS,
since every obje t history operaiiin illhoiv.s 0utching hiAh. Ihue c st 0 this altclnalke is, discussed in Chapter
5.
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timie) w~ould increase if tile concurrcncy of accesses to buckets onl a single 01IS page was

c~iinaxI.the 01IS page buffecr does not enisure atoiflicity of insertions of ob~ject headers

i nto Of IS. 'Ill is non -atomic insel tion of obje.ct hicaders is manif'ested after a crash in one of
three types of !nIlfornl1-cd hashl table chains: merged, cyclic, or incomplete.

Afergedl Chains:

A chain i-I Co~nsidered to be merg,'cd wNhen its last bucket contains aI link to a bucket that is

p~art of, anodher Chain. III Figure 4-1. chain I is meriged with chain 5. One xx ay in which

clia n I o culd hame become merged with chain 5 is as follows.

AL;wnctht thle initill sUate ol'pages. in both thle buftfer and on thle I liSk, is a1S illustrated

in 1igure 4-2 and that (4h5 is to b, inserted. In order- to insert oh5, ohl, 101woul have to be

moved ito another empty bucket and chain I would have to he rerouted throughd the new

bucket. Figure 4-3 show how pages A and It would appear in the page buffier after the

insert wvas done. I lowcver. it' the repository crashed before page A was written onl the disk

but atr page B3 %m s xx niuti dthcin il Ixo WId merge wit[h chain 5 as originally illustrated

in F~igure 4-1.

Since merged chains are longecr than niecessar . they tend to reduce the efficiency of the

hash iable algorithms. Fuirthermore. if a mierged chainl is not corrected beibre subsequent

operationls mo.dif'y it, then it may become mnerged with an additional chain cacth timle the

repo;,,itor-y crashes. forming a single tong chain, Thus, wheni merged chains are not

corr-cted., tile original benefit of'a hash table is lost, sinice thle efficiency of the algorithms is

reduced.

In addition, the longer the repository waits, thle more difficult it becomes to fix a mierged

chain. It is easy to fix a di~1 vilcwhe it initially bccomes mecrged becauise all of thie buckets

from one chain are locAed at one enid oif t he mnerged chain and those from the other chain

.ire located at thle ohcr end. VThus. o nly one linuk has to b~e mod ified in order to correct the

situao. I loex. HOas0 a'S 3lditiomati iser tions5 and deletions are excuted onl the merged

elm ii. tile buckets of'the txmo Componenit Chains bcc e interlea, a~soni iue44

Thos. it would be necessary to break sce cal links and then reli uk thie buckets properly in

order to i-cc' struct two separate chains.
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Cyclic Chains:

A cyclic chain contains a bUcket whose link Points back to another buket (also in that

chain) that is closer to the beginning of that chain, ats illustrated in Figure 4-5. Cy-clic chains

are undesirable because they prevent the hash table algorwithms from icrininating. on ther

words, these algorithms become infinite loops when ex\ecuting on cy-clic chains becauIse they

niever encounter a null chain link. which signals that the C1nd Or' thc chain has beenI rchied.

0 o6

1 x v 4K 6

27

49

Page A Pg

Figure 4-5: A Cyclic Chain

For example, assume that the state of pages A and 11 in the buffer and in OfHS is as shown

in F-igure 4-6. and that. the following sequce1C of operations is executed.
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each1 :.tep is 'c tel No'.'.. il a craIsh occurIs atl a p)ill \% ''hen pae \(t thc disk) is still in

he ;title ,tiate af. lx, 10ic m) of thcse opertins wre ecwcuttcd Nct p.mc It has hect \\' ritten

0i1 ) ii lt: disk InIIl bid111 state, then1 chainl I bCcomeS tlyt 1141 '.' \i1II dhinl 5. anld the

IL'Isul lIVt L11.11 In ol;itins;a Ce itics pie'.iously shown ill l-igure 4I-5.

When a o.ckI,,v itid'lli otealed in aI dhain, it is always acci unied h the mnerginig of
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tkvo challIs, as demonstraICd in the piec I )is eu )l Ilc. I icrelore it kO111Id seem that in order

to detect a cyclic chain. one would simply check for a merged chain. How.ever, this

detection procedure would not catch all cyclic chains if they were not always corrected

belore allowing subsequent ),perations 1t0 111dify themn. For e,,ample, suppose that oh27 is

to be inserted in the cylic chain illustrated in Figure 4-11. Since bucket 7 is int oh8l's home

bucket but is oh27's homne bucket, oh81 nlust be removed fromt bucket 7 and oh2l imust be

inserted in olS I's place. I'u rthcimore, if possible, ohl should be illoved to aiother bucket

on chain I that contain s a deleted objcct header. Since bucket 12 is ()ll chain 1 and contains

a deleted object header, ohS1 is ins-rtCd there after the deleted oh72 is renLo\ved. Iially,

oh27 is inseited in bucket 7 and chain I is rerouteld aroUtnd it. 1 li imal state of )pagcs A, B.

and C is shown ill Figure 4-12. Sit cc there is no merged chain an m rc. the cycle would

not be detected by tile simple detecion procedure that was proposed abo e. I hus. as is the

case with merged chains, it is advantageous to correct the damage in cyclic chains before

allowing further operations to modify it.

Incomplete Chains:

An incompleie chain is one in which the til end of the chain is unaccessible, that is, the

last reachable bucket in the chain contains a pointer to an empty bucket or a bucket on a

damaged page. 10 For example. one way in which an incomplete chain could be created is as

follows. Assume that the initial state of the pages is as shown in Figure 4-13 and tlhat oh81 is

to be inserted. In order to insert 01181, it is necessary to find a free bucket. insert oh l in it,

and then add the bucket to chain 1. I lowever. if the only free bucket is bucket 5 and the

repository crashes betbre writing page B but after writing page A in OIlS, then tie chain

becomes incomplete. as shown in Figure 4-14.

i0[hus n incompelee chains are caused no( oly by fuofn-alto ic inertons of',,Ihb ci tea;dcrs. but also by Iajd

OIlS pages.
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4.1.2 A Modified Set of Hlash Table Algorithms

IHcre \%e describe simple mtdifications to the insertion. deletion and search algorithms

that make (hie hash table sclf-reco ering with respect to the structural damage that has just

bcen described. I irst. strai'l-htr\xard consistency checks are incorporated into the

algorithmis in order to detect dlects ill a chain before any operationS inodifI the chain.

I len. if a (le-cct is discmered. a simple correctiol procedure is applied in order to return

the chain to a state in \\ hiclh it call he sak'ly operated on.

In order it sinphily thil e C\plal tions of the nlodificd algorithms, a defective bucket is

dhCitld to Icanl a b \i sitlh one o the following properties:
1. 1 lie bucket is supposed to Coi lain an objcct header but instead, iS empty.

2. 'he bucket contains an objec, header whose home bucket is not the first bucket
tI tile chain to \N, hidh it is linke.d, and therefore, does not belong in that chain.

3. [hc bucket is located on a bad Of IS page. and thus, cannot be accessed.

In the modified algorithms, every chain that is touched is checked to ensure that none of

its buckets are defective. If a1 delective bucket is found, then the link of the preceding

I)ucket (which points to the defective bucket) is changed to nil, thereby separating any

merged chains, breaking any cycles before the hash table algorithms become trapped in
them. and repairing the improper link in any incomplete chains.

More specifically, the modi fled search algorithm is as follows (note that all of the changes

and additions are italici/ed):

1. lash the given objccl header to the home bucket, X.

2. I1f bucket X is empty or contains an object header whose home bucket is not
bucket X. then tcriinate unsuccessfully. Otherwise. continue searching
through chain X until either the object header in question is found , a dhfective
bucket is. tfwl )Ir until tile end of the chain is reached.

3. If the end of the chain is reached then terminate unsuccessfully. If a difective
bvckel i.s.ound I/hu ('hantge thw linik of liw preceding buckct to nil. and terminate
LnMst'Ssfuhl'. Otherwise return the object header that was iound.

The search algorithut only checks the buckets that it touches during its nornal course of
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searching. III other words. when the search algorithm fhlds the object hcader in question, it

terminates at that point, instead of continuing to check tihe remaining buckets towards the

end of the chain. Any errors that are located further down the chain can be detected and

corrected just as easily by the next operation that touches the final part of the chain. since

the search algorithm does not modify the chain.

Next. the modi lied insertion algorithm is as follows (again, all changes and additions are

italicized):

1. Perform the search operation "n the object header.

2. If the search terminates suc:essfull . finding an older version of tie object
header in some bucket I. thci insert lhc updaed vcrsim of"the ( bj( I header in
It and terminate. Otherwise, hash the object header to the home bt ckct. X. )o
one of the fbIlowing:

a. If bucket X is empty, or contains a deleted object header whose home
bucket is bucket X. then simply insert the new object header into bucket
X.

b. Il'bucket X contains a valid object header whose home bucket is bucket X,
then check for another bucket on chain X that contaihns a deleted object
header. If one exists then insert the object header there. Otherwise, find
another available bucket, Y, insert the object header in it. and add it to the
end of chain X.

c. If bucket X contains an object header whose home bucket is not bucket X,
then bucket X must be part of another chain beginning with bucket
Z. [hus, it is necessary to move tie object header presentl in bucket X to
some other bucket. Starting wx ith bucket Z, search down chain Z until
either a defctive bucket is fiound. a non-defective bucket containing a
deleted object header is found, or until the end of tlc chain is reached. If
a non-defective bucket. 1). containing a deleted object header is found,
then move the object header in bucket X to bucket 1). If a defective bucket
is foitnd then change the link ofihe pr('ceding hucket to nil. and continue as
if the end of the chain wa.s reached. If the end of the chain is reached, then
move the object header in bucket X to a free bucket. '. and reroute chain
Z through bucket I. Tlhen, once the old object header has been removed
froni bucket X, insert the new object header there.

The insertion algorithm does not need to explicitly include a consistency check for chain
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X becauIse, as its first Step., it eXcuteIs thle Search allgoruthi (whlich checks for

inlconsistencies) onl chainl X. Oil (lhc other hand, it does have to check through the buickets in

cha~in Z. InI fact, every bucket inl chain Z. must be checked. regardless of the relative position

of bucket X inl thle chain (unlike the consistency check performcd within the search

algor-ithml). The reason for this is that chain / is to be nmodiftied inl suich a V% ay that may

make a cycle invisible to the currenlt Cycle detcction procedure, as was demonstrated onl

page 63.

Ihlis lliL!iI lead onle to beCl ic c that when perflorming i insertion, the check pcirtormed

implicitly v\ ith in the search algor-ithml oi chainl X is nlot sti fli1cieiit becalsk chainl X may still

containl a Cc ce whnII the insertionm algorithmn alters it. However, it is su fficient because ira
bucket is flound to contain the ohject header before thie end of' the chain is reached, no

sti ctural changes will be made to thle hash table si nce the object header will only be

reinserted inl thle same bucket. ThuLs. since nothing will be done to disturb anly cycles or

merges fuirther clown the chain. thle next operation that eXcutes on1 thle chain will still be

able to detect anly inconsistencies. InI addition, if the object header is not found to exist

already inl some bucket, then thle search algorithm will have checked through tile entire

chain inl the process of looking for the object header and will have corrected any

inconsistencies that it fou~nd. F-or these reasons, it is not necessary for the insertion

algorithm to include an explicit consistency check for chain X.

Furthermore, since the deletion algorithmn does not make anly structural changes to the

hash table, it (does not have to be modified at all. Thus, since it is comparable to the search

algorithm in :is requl-ircecnts for- error detection and correction and includes the search

algorithm as its first step. thie chinil that contains the object header to be deleted will be

implicitly checked and corrected.

tI 131iiithiii- for tfininpii!a free bucket has not heen described in detail because it searches through the disk
p~i3esiiime Pt inmum idc r %%ith rc'pect i) disk access time and is fairly im pleimen tation11 speciflic. F ecn

theiii: doies eno it,, ueChe1in to puide its st~mches Ijir buckets 1hal can be Freed uip. wliene~ r it actually
[ocii vs a biink kc romli a di;iiin, it muist do a coiiistencv check on thie entir-c chain (as is dotne in the insertion
,gI.-1 of 11hill n hiiel, l11t eat lainl ii any delkte buckets are detected. in this %uy. it will not tuodily a cyclic
haitn suIi a %%a) that m uld make the cvycle ti anspa rent to the simtple detection p)rocedure[.
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Consider once again, the chain in Figure 4-11 ol page 67. It is a merged chain consisting

oflchains I and 12. and also contains a cycle.I ithe insertion of oh27 had been done using the

modified algorithms instead of' the old ones described in Chapter 3. then the cycle would

have been broken and the insertion would have proceeded properly. First. the search

algorithm Aould hve terminated unsuccessfully. Thus. oh8l wouhl ha e been moved and

its chain %would have been rcthrcaded through the new bucket. In the process. each object

header in chain I W ould have been checked in order to ensure that its home bucket was

bucket 1. However. bucket 12 would have been I'Mind to contain oh72. Since oh72's home

bucket is bucket 1. the link from I-ucket 7 to bucket 12 would have becn changed to nil.

Ihen, once the two chains that were merged had been separated and the cycle had been

broken, as illustrated in Figure 4-1 . 01h WOUl [ ]C been moved to another free bucket

(since there were no buckets alrcad' on chain I ; ith deleted object headers). Finall). chain

I would have been rerouted through tile bucket containing oh8l and oh27 \\01uld have been

inserted into bucket 7. forming a new. separate chain, as shom\i\ in Figure 4-16. Note, that

even though the cycle was brokcn, chain 12 and chain 1 wcre still left mcrgcd at a second

link between bucket 12 and bucket 3. It was not critical to correct this merge during the

insertion of oh27, since the bad link would be broken the next time an object header was

inserted in chain 12.

All other examples that were given in Section 4.1.1 would also have worked correctly if

the modified algorithms were used. Since the changes made to the algorithms lbr searching

and inserting object headers in the hash table Csur-e that the internal structure of the table

is always correct or detectably incorrect, crashes cannot alter tile bchavior of the hash table

algorithms. In other words, they cannot decrease the efficiency of the algorilhms nor can

they prevent them from terminating.

4.1.3 Obsolete, Lost and Duplicated Object Ileaders

There are two ways in which the obj'ct hfeadcr table can he damaged, making it

inconsistent with the current state of the object \cisions in VS. I irst. an object header call

become ohsolctc if it is modified in the page btcfler but a crash omirs bellore the page is
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written out to the disk in the modified state. Even though tle object header appears to be

valid, it contains out of date information about the object.

Second, an object header can get lost if a faluiure causes the Ol]S page on which it is

located to go bad, or a lilure occurs before all pages that have been modified by the

insertion algorithm have been written fiom the buflfer into OTIS. For example, consider

chain 1 in Figure 4-17 and suppose oh66 is to be inserted in the hash table.

S5 10

I th1 V 6 oh2l V 0- fl o-4l V

2 7 12

3 8 13

4 914

Page A Page B Page C

Figure 4-17: Pages A, B and C Before Oh 66 is Inserted

Before inserting oh66, oh21 has to be moved to another bucket and chain 1 has to be

rerouted through that new bucket. The final state of the pages in the buffer, after tile

insertion is correctly executed. is illustrated in Figure 4-18. Now, suppose page B is written

(,n the disk in its new state but the repository crashes before page A is written out. Both

oh2I and oh4 l become lost by virtue of the fact that they are no longer linked to the chain

in which they belong, as shown in Figure 4-19. The noimal search procedure will not find

them because it will terminate after searching through buckets I and 6.
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4.1.4 Recovery of Lost and Obsolete Object Headers

In order to recover a lost or obsolete object header. the repository must restore the

current version reference. the token refcrence. tle commit record rincCice and [he end

pseudotinle. First, the three references can be dCerninCd from the current version or token

in VS. as 'ollows. The repository searches scquentially hackwards through VS 'rom the VS

write pointer until it finds a Simple or root version image for tile corresponding object. This

version image will either be the current token. an aborted token or the current crsion. In

ordCr to determine which of three :t is. the repository must check the sute of the commit

record that is rel'erenced by the vet ion image (assuming for now. that tlec commit record

hais already been recovered).

If the state of the commit record is UNKNOWN. then the \ersion iniac is a token and

the three refrences in the object header (currnct version reference, current token reference.

commit record reference) should be set to the token's VS address, previous Crsion

reference and commit reCold rel'crencC, reCscCtivCly. On the other hand. if the state of the

commit record is ABO111), then the version image is an abortcd token and the object

header's token and commit record rCerencCs should both be set to nil. Furtherm1ore, tile

previous version referenced by the aborted token is the object's current version so the

current version reference of the object eIcader should be set [t point to that previous version

image. Finally, if the state of the commit record is COMMIIIE). then the version image

is a version and there is no token. Thus. the three refirences in the object header should be

set to the version image's VS address. nil, and nil. respectively (using the order above).

Now, the remaining ulue that the repository must restore in the object header is the end

pseudotime of the current version or token. The repository simlply Scts this field to the

pseudotime of recovery because that pseudotiine is the carlict possible pseudolime at

which it is guaraniced that no reqtest has read the version or token. I he exact, original end

pseudotirne may have been even earlier bmu cn( i be CailY deterillincd b) the rep,,itory.

Thus, the pscudotime of recovery is .atisfactory since it still cnsurcs 1I ;t all atomnic a1clions

are properly synchronimcd in their access.s to the object CtCll IOt,'h ,t1c aldtoflic actions

may he aborted unnecessmarily duc to the arbitriry extension of Iti l tl itime. ;cction
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4.3 Will LIISCUl5 11ow the repositoi) dCtermlineCs thle pscudotiine of'iecovery.

U11i 01forittly. there are some1 o mications to the recoxery of' lost and obsolete object

hecaders. First of' all. the repository cannoltt dkisnml11 ma te CI 11t ce nObsolete .1nd cuirrent

object header. ulsing, 0m1 lyte inlfirn11at ion ill thle object header. Second of all, (lhe repository

dot es not hae any bound on its sech th rough Vs. When rCct 'aC i hg a lost or obst (Ic object

hecader. Since Vs is alk \ mS iiicreasing in sue,. it is not acceptable for1 thle repository to do anl

unlborn idedI sac-lCh C\ cry 11 itm IX haito r'CCO\C 111 anbject header. lb us. we~ necd a means for

dufeCuiOn 01' obso lete )bjectd er an LCIS ld an efHein It mean1s for0e cre-Cliol, 01 both obsolete

and lost object headers. I or tle~rcas( ns. rccovel-r1 (pock/s anid OILS' (heckpoint epochs

have been developed.

4.1.5 Recovery Epochs

A rcco~ crN epoch is thle time period beCtweenC tWO repIositor-y crashes. Each recovery

epoch is dlist ingu ishable from thl. others by its recoverty epoch number, or R EN. which is a

ll)onot' i'ically increasing number. Whenever the repository crashes and restarts, it

increases its R I-N. which it maintains as part of' its global state. Also upon restarting, the

recpositor\ marks thle beginning of' thc newv recovery epoch in VS by writing (in VS) a

bouindary) version image. called a rvcoveri epoch mark, or REM. Which contains the new

R IN. [1his R EMN enables thle repository to determine in which recovery epoch any version

image was created.

Now. in order to dletermirne wvhether all object header is current or obsolete, the

repository must check that the object header contains a reference to thle most current sinik

or root version image of the object in VS. If the object hecader does not contain a reference

to the most current version image of the object. then the repository must update the object

header. I lowever. the repository only has to check each object hecader once per recovery

epoch. since it mlarks thle object header With its current R IN after thie first check. 'I flus,

whenever anl object header is accesseti. its Rh N is compared to) the repository's current

REIN. 1f' the two R EN's are the same then the object header is current. Otherwise, the

object header is either obsolete or is still current as of' thle new recovery epoch bilt has not
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beeni accessed since thle last timle the repository crashed. 'Ihereflore, if the R EN of the object

header is not the samie as that of the repository, then the object hleaderC miust be cerified to

be current.

sequentially bcwrstr~hVSZICll~ 16-1Ilr urn ipeo otw-il

image ol the object than thle version image ref'erenced in the object header. fit finds ofle,

thlen] it uprdates thle object header's references and end piscudotie and marks the objec

headerCI to be cuirent by sctting the object becader's kILN to that of the repository. 11' thle

recovery manager does not find onl( then it just sets the object header's R FN to that of thle

repository. since thie object header is still current.

InI order to certify a potentially obsolete ob~ject header, the recoe ry maniager only has to

search through the portion of VS that1 is bou~nded by the REM of' tile current recovery

ep)och 12adthe REM of the recovery' epoch that1 corre-sp)onds to thle Object header's R EN.

The recovery manager does not have to search through thle current recovery. epoch in) VS

becauI.se if thle object header had been accessed in this epoch its kEN would be current.

Furtheror~e. the recovery mniaer does not have to search past thie REM that corresponds

to the recovery ep)och of the object headers RkEN since that R EN indcicateIs that thle Object

header was last Certified to be currenlt in that recovery epoch. Thus. if the recovery manager

does not Find at version~ for that object by the time it reaches this REM ill VS, then thle object

header is still current, and thle recovery manager only has to update thle object het.ader's

R EN.

The recovery manager's search through VS can be further niliniied if recovery epochis

reatlically created whenever all 01 IS pages that have been modified inl thle buffer have

been written out ito the disk (i~e.. \\ hen thle repository becomes idle). and if each RIMI is

marked as either at crash or non-cradi Rh A. Using this scheme, thle recovery manager

12 the current recovery cpxh is thc flCW rfcmflr3 epoch thal bc!mn Mien tile cpq hil(N i ciartcd ater [lie

;n''~t rcen'ft crash.
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Wo1ild oly h1,v%' to Sc1n th rou)Lgh thle nton-crash recovery epoch immnedia~tely prceding the

crash recovery epoch. hFor exailple. suppjose that the rep~ository crashes during recovery

epoch S andl upon restartingo. \\,rites a crash R [IM Ior recovery epoch 9 into VS. ats shown in

Fi-Hire -1[20. I I'an object header \\ith ain RF[N eqlI to 5 is accessed after thle crash, then thle

recoverN manage r only has to scan through recoveriy epoch 8 1('or at Inure en rrent version

inmgk because all OHl S pagwes tha \\ ure nodifhetl duiring recovery epochs 5. 1). and 7 are

known to have been wriutte out b1 viritue of the f'lct that they all precede another non 1-crash

recovery epoch.

CRASH NON-CRASH NON CRASH NON CRASH CRASH
REM #5 REM It6 REM #7 PLMA 08 REM #9

Recovery Epoch # 5 Fiue42:Rcvr pcsI SRecovery Epoch #8

Thus, the benefits of recovery epochs arc twofold, Each object header only has to be

checked for obsolescence once per recovery epoch and when it does have to be checked, the

search through VS for the current version image is botunded.

4.1.6 01IS Checkpoint Epochs

Even thouigh recovery epochs exist. there is still at problem in bouinding the recovery

manager's search for thle current version hige of at lost object header, since there is no
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object header to provide an RIEN. For example. if tile 011) of a supposedly lost object

header had never been assigned to any object because of a crash. then there would not be

any version images in VS with that Ol) and the recovery mamager ;Notild have to search

throtgh all of 'S before it could finally figure this out. Simi ilarly. if thc object

corresporlding to the lost object header is \ery old. then ill order to b1d1C the current verSionl

image, the recovery manager would have to search Ih>omlgh a large portion of 'S. In order

to prevent these tnbounded searches. a table that checkpoints the object header

inlfbrmation for every object that is CUrrent. is pcriodically created ill VS thereby cnabling

the recovery manager to bomd its search ttrough VS \\ ilh the localtion (, the most current

completed table. lihis table is called at checkpoint lableand the period of ltime over " hich it

is created is called ai chckpoint epoch.

Each entry in a checkpoint table consists of the object's 01 D as well as a1 refcrence to the

version that is current at the time the entry is created. Since the Constructiol of a

checkpoint table may consume a l1arge amtoutnt of time. it is not acceptablc for the repository

to temporarily discontinue service in order to take a snapshot of the state of all object

headers at one specific point in time. Instead, the checkpoint table is created in the

background by a separate process. called the checkpoint manager while the repository

accepts and services external requests. Thus. a checkpoint talblC does not necessarily capture

the current state of every object header at one particular point in time but instead, it

captures some state that was current for each object healder at some time during the

checkpoint epoch in which the table was crCtCd. Furthr. ,-ince the checkpoint table is

created in VS while versions are also being c-catcd. its entries may be intule ed with the

versions. Thus. all of the checkpoint entrics are linked together in order to make it possible

to search through the veision images of the checkpoint table cclusike of' the rest of VS.

-inally. before the clheckpoint manager starts to urcate a nevw table, it writes a checkpoint

epoch mark. or CI-M, in VS in order to mark the bcginning of the le\ chcckpoint epoch.

The checkpoint ntanager has tol be sure t.) include an ellr ill the cClIl)kint table for

every object that existed diitring that chcckpoint cpoch. I iowc cr. the check pint manager

xkotnld not necessarily do so if it simtw creatcd a tcheckpoint entry IN-r cer\ object hcader in
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01IS since "()tile obIject licadei' l i[a h la% e )en lost. ( )I (lhe otheir hand, it %0ould do so. if it

S".!rchedL tliOul~i \ S 1 6r All oflI he CII curn \ eSiOn iliageO and created a checkpoint entry lor

each 011C it lotiiid. I Iv \c.thiis M 01111 be at least as had as seaichiing thr ouigh V"S for every

lOSt Olbject heCader. ii' no10 s. Si ne c horigiiial ieasol li Ii creating a checkpoint table was

to nhiniini/e, and bound tile' rtco \ a~la! scri tiliotiOgh \S. the Jcllekl)oift mfanlager

Should 1101 hIaM 10 t iuke an1 tillhouiildcd .eal chi In )lcr: lo (CeAe the table. I hielrfore. it was

nccessar' to come (qJ) v. iii some otlher "clicinic that \\ouild accolunt rIbi every object that

C\i,.tctl In riii'.a cllekpojnlt epoch.

'fhe check1point illanalltcm (Icate' th (Ilie 'Kp)Oint tab. i.t'h). Wheni each object is

fi 1St CreateI'd In [Ihe rept 0Sit \. thle hIck p) iIIit iianage r Creates a checkpoint enltry lbr- it inl

Idue currenClt Clmcckpu(imIt table. 11101n. [ieI chIcCIpo(inlt IMuanacer accounis INr thle reCmainling

objects e\isti ng in the cl cek p it epon ch by uipdating each entry that c \ists; inl the checkpoint

table of the p ieN ions chec kpoilit epCh))I. and I kICing it. Ill the inw clieckpoin t table.

In, order to update an 01l1 checkpoint table entry, thle checkpoint m-1anager exanimnes tile

cl'Ore.sponldin-g object header aind estracts the reference to the current version or token.

However, if thle object header is lost or obsolete then the checkpoint man,11ager must wait

until thle recovery mnanager certifies thle object header belbre Updating the checkpoint entry.

Also. if the objec:t header indicates that thle Objeet was deleted in the previous checkpoint

epoch. then thle eheckpoint manager does not write anily uIpda'ted entry for it inl tile new

checkpoint table. 'I ius, it can be seen that1 this met hod0 (if creating successive checkpoint

tahles from Previous ones is guaranteed to inludeILI entries Ibr all objects that ever existed in

each checkpoint epoch. wit hc ut having to scan thr-ough alil of the version images in VS.

When sear-ching for the current version imauge of an object whose header appears to be

losit. thie rcco)%er-, IllIunualer shind either bind an actual version or a checkpoint table entry

contlaining a referenice to thie en rrenclt version. by thle t inle it reaches thle CEIK of thle last

cOI Im pltedCLI eL CnCI)iI) I)pII in VS (W~hiich will be re ferred to as thie linmiting C FM).

Otherkvise. [II, object has been deleted inl sonic previouIs checkpoint epoch or it never

existed. [or example. eo1m;ider the checkpoint epochs in \'S that are illustrated in Figure 4-

21. Since thme table li r chccknoitit epoch #13 is still being created, checkpoint table #2 is



the last completed checkpoint epoch. This means that CEM #2 is the limiting C-M and

thus, the recovery manager would only have to scan through to CEM #2 before it could

conclude that an object never existed or was deleted. Thus, CI-M's provide the lower limit

for tile recovery manager's search for lost object headers.

C irient
CEM #2 CEM #3 Endof VS

CPT # 1 CPT # 2 CIT #3

old~~(1( Ol l l l l l l d I 11 l d o

C = checkpoint table entry

V = any other type of velsion image

CEM # X = beginning boundary of checkpoint epoch # X

CPT # X = checkpoint table for ch: ckpoint epoch # X

Figure 4-21: Checkpoint iables In VS

In order for CEM's to be valid limits for the recovery manager's searches througLh VS. the

repository s processes must never confirm the creation of an object (to an e\tcrnal node)

until the checkpoint manager conl'irms that a checkpoint entry has becn created in VS, since

if they did, then it would be possible Ior a crash to occur after a con firmation \r s sent out

but before the entry was made for it in the checkpoint table. In other Words. it would be

possible for an object to exist without having a corresponding entry in the clcckpofint 6be

and the recovery manager might incorrectly conclude that stich an object never existed, if

the corresponding object header ever got lost.

For example, assumC that the creation of object A is c mfirmed to an extcrnal node

before the checkpoint manager confirms the creation of the corrcsponding checkpoint

entry, and that the repository then crashes before the entry is created. Since each
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subsequent table is created h'orn the pretius Lible. an eniry Jbr object A will never be

created in any o1 the chieckpoiiit tables. NoN. if* thle object header Imr A gets lost at somne

timec when thle Current ersionl ol'A is loWce FuLrther back in VS than the limiting CEiM (see

Figuire 4-22). and tlie reposilory rccei~ es a request. to reaid A. then thle recovery manager. in

attemlptingo to find its currenCft crsiori in VS. mmu d incorrectl conclude that thie object was

pre\ )ulyl dIdeted or OlC~ r C \isl[Cd. Si rICe it \Wmlii not find a %ersin illr check point en try by

thle timle it readcd thle hllitillC (TI 4. I lov\ c\ cr. ii the process that created object A hald not

sent out thle con himlill il inl thle first p~lace. thenu thie object still would have( been nonex istent

aInd lit) C\terl lile 1,1 oWtlld IMli' SCIlt any1) reetst for it.

Cmr ent
GEM 02 CLM #3 nofV

CPT #2 CPT 9 3

old oi old 'Id ml Old odl

Ao n 63~i d 42 51 ill; 63

cuifent C - cheickpoint lablc entry

of A V any other type oif vrvsion image

CF M ff X 0egiiruii ho(Indarfy of checlpol epoch # X

C'PT #*X r cptnt lable for clic,;kpoint epoch if X

F igure 4-22: No C'heckpoint Entry Imr Object A

Finally. there is one decision that still hits to be made concerning checkpoint epoc~hs, that

is hlow ()hcn shou~rld thle chckpoint manar-er start at nLW Checkpoint epoch? Thie 01nlY

Co~nst raint is that at newk cpt ih can not be st,!viecl unitil the checkpoint manager hits made

updatedW entries in the current table flor all of the entries in tlie previous checkpoint table.

As long as this requirement is miet then the chieckpointing mechanism will work correctly.

'I hie discussio~n of* how this dcision should be made is def'crred until Chapter 5, which
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analyzes tile costs of the necessary tradeoffs.

4.2 Recovery of Commit Records

Now that the recovery of' objects has bcen deCscribed.l it is necessary it) explain how thie

conmmit records are recom eed. Rccall that, thle Versions of the comm11it reCcords (ats well as

those of the objects) are maintainej1 in VS, whIiich is stable storage. I fitts. VS in itself ako0

co n tains (he Current statc of thle conmmiit records. H-owever. the repi sitor lB acesscs these

CerSiOliS of' acomm1it rcord-L t hrong i Ithe con u nitI recordl table. \% Ii ich is oi iIN kept in olati le

%torage. Ii hus. when thle reposito r) Crashes, thle coini it r-coa Ird tble is coi opetel) lost.

Upon restarting. the repoLSitory crecates an emiii pt abic and add k ciics ats lie\% comuimit

reccordis are createdl Also. V\ lieui tll, repo,,)itoiN restarts afrer it crash. it inilplicil\ aborts all

Commit I Cco ds that \% cue inl thle U N 1K NM )W N state t the tlicme of' thle crash. sil licc there is a

gooid prolblility thlat theC hrokcr thalt TcaICed t11C OMuuuiluron I-Crld al~k ell\ *uhouIe it

anlywa). dtie to tie Crash. IIo\%cN ci. this *ubortli U is not1 (toile e\plitlI since thle Commit

reCcord table nto lonlger conltins eltries (M. a115 ot 111C coM'it reCoi thatl r' Cceated

helore thle Crash. Instead, thie abortions arc dtonle as Ibh1lows.

As thie reco~er\ mnnaler sc ans scirucuitiall) through~l VS inl order to recuo u.1r object

headers. it creates entries (mnless tile\ alread) cist) in the: co uiiuu recordl tableC 1'r any

%ersionl iniiiges thatl it enti Iumliters that o nain the final sltt ot ai commuit rco rul, I lowecr.

it onlh creates thewe entuiv. il'the , aculie is ( ( )\lI I I 11)1.1; I !lus, \\ lieni the recovery

managerlg is ;wtmill1 moeringj an object heatlder. iftheli co irsp( iding, loken's o iluuuit record

is not foiud ill thle Commuiit record table thwn that commiliit ueeord i licci beehortetl. h-ither

thie rcomer) mnanager hadl Ibund thie final statle Nrsii n beforei it rt,0 hed line token in VS but

dlid not create an entry li r it in the comiit reco rd tale s1ineCC it, St.1te \%As AM lW I Ill), or

else there w\as, no final state version in \'S and thus, thie ci iit rcco rd \\a-, aborted1 by

13 As~nhnnnsx Soi ,iItr(wess \ill cscwiiiI. dlcIIICiw cnmc trot dit mlm' record tahle. aftrr
rcfecki., ii1,. tile ohiccit heajtci s oI alt iotkns iin the linked Ist li~nc Notu iiptl~lcd to rcttcci tlie token's
(Commniit Ic rd's) fina i~tate.
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definijtion.

Fuirthermo~re. the hn iker that created at commit record that was automiatically aborted is

eC entllyl in lorni11ed of this atioiatie abort ion when it attempts to retransnmit any

incwi il ned clreate -It ken reCquesis, or tries to1 sei the Fil stale of the -of)) ))it record. Upon

bvini m wiiicrmd. 11w hro kcl.rjelies the enire atomlic action. I Ii s, the repository's recovery

(ifcoliliit recid ,u1 51pportls S%i~ lh iw's atomic action protocol.

4.3nflcovery Manager

I his sect io n dccilcs h o tie recot cry mimaga.'r c i ndinatces Ole rep ?siltr 11s recov cry

acti% iiics and interldo.ccs Vb ii th tiother reposili-Ni processes vM hen thley acCSS object headers

that has e to he reci sered. Ili a II iithell. the ro:cos er manatemfs tre s 1 I ic rcp siti ilt t

statc inl %% hicli it canl restimei ser% ic~ing reqiiests Fro m other S%% at h is nodes alter at crash and

then rimus in the hackgii in id. ditring the repository \ inormal cours me ohA' i it ics. LCrcil ying

filhe object headers and teniporarilN creating entries in the conmmit I cCird table th1A Failitate

the rccoser) o~fthese object headers.

I hus. A~ hen the repositor) restarts after at crash. it doeis not start accepting messalges until

the reciover) manager signals that the globtal state diita has been properlN uipdaited in State

Storage and encachecd ill idatile storage. I 1osmever, once this signal is receiv ed, the

rel isifo ry remies its co munnicat ions %%.iib the i ier Swallow nodles.

thle il salliles ill State Stoirage that the recos cry manager has ILo update are those iof the

VS write pointer. the last ihid assigned toi) n obhject or comumit recorud. the lalt e it)ime

specified b) any retpicst. and the reposiiory\s R I N. In order 1(o simplify the description of

the recover% ol the %allies of the VS write pointer and the last uid assigned, several terms are

defind as follows:
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WP = value inl State Storage of the VS write pointer

X = the number of pages that mu1Lst be written inl VS before WI' is updated
inl State Storage

LUJA valu inl Statc Storage of thC lst Lnid aIssignedL to an object or commit
record

y the total fliime 01 uIid'*s that MUIiit he aissigned to objcts andi commit
records Ibelore I ii A is updated inl State Storage

Both WP~ and L U A arc lperiodically %%it ten into State Storage but thle actikc copies are

upda(hted in v'olatile storage. I[he %amues X\ and Y ahoL e control thle frequenc) and thus thle

cost of' State Storage updates. ('om~erscl\. they also contro l thle cost of'recovery.

Inl order to) restore the VS \ rite po intel, the recoiN ) m ry imil-c muIit .varchl sequntIIiAlly

through the region in VS. hNnindick b\ t1he t\\() pages, WI mi ad W1 li X. 1int i it Iiukd thle last

VS page tha has been s rittcn. I Li tiermi re. ill order to restIore thle en rii I alu ticdlast iaid

assigned to an object o~r comiki record. (tiec erxl- ma nic:er siriipl astimIieN (1i11 Y Iuid's

wvere acit ally assigned hci~ re thec crash. and incereatse- I I A\ N Y. Inl tis %\ay tile repo sito ry

is still guiaran teed to assign umiliquc id'Is iit 1Ii c 4hiec and et uniilit lec r cen liugh Ii on

uid's % ill nevecr he 'issiclned. (Sinice the Lid is a 64 hit M11111 hM,. it iSi It criil 11AIC ( i i id'S

arc wasted.)

Flhus. \ and Y arc tunin- Imarameters. A large X \al m in-casecs rcu i\cr\ time amnd a

large Y %altie increcases file % asIc of 110's Lull Il m-u. halincin thes i sa amist thle cost

of Suite Storape upda(Ltes ShouIlId be simlple.

NcALI the rc( i) cry, ml~farmer miust rl thde la test 1),,emi( tinlc 1pecifticd hy aily requeist

sinIce thiis psCeudt iiC is uIsed aIs thle p-seidoItiile It rc.-melrN. \ltlu Iiji tile \%%L rking co py of'

this value is kept inl volatile stlige. it is also stabilimel hy r-co Irdilig, oil each VS page. thie

valuie (If tile latest eild piSetd( tillie of'all v'ersionls inl VS (it) (LIand itichiding that page. I luls,

upon restarting. the recovery manager simply acccssecs this value from thie last VS page

written into VS.
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'Ihle remaining value of thle globail stalte that the recovery manager mu11st u~pdatc is the

repository s l(EN. since thle RkEN Ibund inl State Storage is obsolete due to thle fact that the

repIository) just crashedI thIus, thle rCcovery managerIII inlcrements thie Vlule of' (Il R N

li)Llnd inl State Storage-, and w~rites anl REM lbr the new recovery epoch into VS.

Fi- rill rmorc. at \~olat i h copy ot thiccunrrent REN is m aintained inl primary mnilory 10 speed

upl thie process of c:hcck inv object headers.

There is me FImal task tli it Lhe rcovecry managcr must perfoarm beli re signalling, that it is

sal~lt til te recpositor) lo ac~cept esic mal messages. It must restore thle chicckpoint manager.

Since thec chckpoint iiiinagcr miiSI conltinueI creaitingl tile CUrrent1 ('ClIOlit tAhle front

\\ here it lel't off MIChen[lhe rcp( isi t r ,crashed. 'I o speed reco~cier. it is arranged that ec cry

\S palge Contains a po iter lo the nu tt currenclt Checkpoint entlry \\ ittenl into Vs. I hus, inl

oRIer to reCstore thek chICcpo int nliatm'c. tile reovt~cry manager obtainls Fromit(the last page

\% rittcnl int~o Vs. thle loc.ation ti' thle List dccKpoint entr- that % as \ rittenl into \ S and pals' s

it onl to the checkpointn manager. [hen, the checkpoint manager cmn actually acess that

diheckpoint entry. find thle 110"t 01nil etchccIkpOint enrx1 (inl the cut 1lt chckin0It table)

(lais also illit:e prec n in check .111ot (Aln tan d reCsumel t~fipdtrl lif te entries ill the new

table, Starting A ith that checkpoint cutr myin thle pre\ i ins table.

I or t:anIle. assumei that thle rept sitory is reco~ ering after at crash and that tlhe state of

\S Iis s dpicted in I i!-u c 4-21 (1n page 82. Inl t h is caefthe mcciM CU crymanager iii MId passi

thle VS address ob thle diekpon Itr -111 16 object 10111) toI the ckcpOint 11Manaer SinIc it

Contains tile mst currenlt Oceckpoint cluty (b1;at ";I Mas It intO \ S, I ienI the chcLkpintm

manager would deteCrmline that thle Chckpoint enitry lor object 5 is the most cur1rent

Checkpoint entry \% rittenl into V'S that is also li lunid inl the tahie created inl checkpoint epoch

#2. and thus. \%otild o niin creating thle table lbOr checkpoint epoch # 3. by Stirling with

the entry for object 2 1ind inl the table lm checkpoint eclh #2.

Once thie recovery- ima-gr ci mnpletcs alt lasks. described thus kIm. the rcine Islw bgins

to accept anld 11ul111I ex~ternal re iiests. e' en though somue of flue reposilt ry's data may still be

incorrect. tIhus, when another repo uitiy process accesses anl ob~ject header that is lost or

contains anl old REN it must "ait utitile rce ry manager ccrti lies thle object header.
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Once the recovery mianager completes the certification or concludes that thu object header

corresponds to a deleted or non-existeit object. it signals thie waiting process. [hat process

then reaccesses the object healder and simply continues with its regular tasks. if' [lhe object

header exists. However. if the object header is still lost. then tile process (like the recovery

mianager) concludes that thle object hecader correcsponds to a deleted or lit n-e\ isteont object

and takes the appropriate alternate action.

Ill order it) avoid repetitiouis scanning throutgh VS. the recow r\ mnager certi lies thle

object headers flr (/i \ersitin im'.ag S that it aIcceSSes as it sear'Ics Seq ieI ltilly' backwardsU
through VS. Ili addition. during ili -, ss, eel thiomigli \ S. thle rewcrv mlawiagCr. tell)pora ril y

creates, entries bor ull commtid e )riniit reco rds that it ec-mliters :iii Iot e li \ us the entries

sM hen the scanl passes thle inlitial comilit rectord erioi is. sii cc earl icr. erisit' us %O ll no(i access

thle comminit record. 'I lien. \hlen tht: icore in anager h' iccl i hIig an b C.ihader and is

LB\ ing it) determine wshethuri thle cuirict\ ci~ iiMIg I S a tt4kcn1 tr I \elsia I. IIkiti5 th" fat

the %cersion imiage is a token it' thic k it 1 eiw inl (h aluit m111t lewld (.a1bCI' lote

coi respondting comminit retird. and WiM.i-S erlt km i( ' 11,1i Oh' %0 114 il IIIit.tlW is .111 Aitowted

(('Kurt if there is wl cuin it? tile C( ?litiil 1icc-()ro table.

I lowettler. the rccot, r\ iinager do1 s nto'lt. pci 1( ),i it, sk.t i il th 'Ill 1 u )11111 a" niimi t i l l inte

haclgrtitind until it linislics. Instea"d, it aIi l tinttgh VS 11i km~lg i'll "umiep nig

obhject headers until there trc lit) littiec prmt -c' si tii tthJc'k heaiders Iti hev c.ci~it.

I henl it halts ICTeptiriillk. tclIieitlh'iiiig ss eIi it 101 1t4lii1 \ !S .i11d icS1tiiis cillier M t h en h

repositor in bcomes Idle (has lit) ptnding rcln etsh r %%lhefii St uric 'K S iessicds aii101her

object hteadcr ehat has not) ite nci Iicd.ipidcf et) InWmul~l a1 Icqmest.

1huts, s\ hile the rcpt isitw tr has, penthlngreuis the rct s c nian apti ()ill\ hats to scarch

throughl the 1101-crash rconcen cpt w IIIA that pC~dCS tihe 11i0t t i ccli crashl ictmer) epOh.

pros ding that there are not 1(),.t object licadeas. ( nlk In the r~ic caset:, 'Mhere an object

header is lost mould thec ruccrt imiania himc it) seardh titamoh k S upl t) (lic iiiiuing

CFII while thle rept sitt ry has pending reusl.I imc~ s r. Ni lieu (lie icc ts ry mianiager

continues to cccri it object fieader diuring tile rept )siI r) 's (ile pertids. Just1 object beaders

may be recovered before the), arc required ill ordecr to satisf'y a rcquecst. and thus, their
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recovery 1%%ill not alect the repository s respo)Isc time lowr In hlilling requests.

Assuming. I'r iio%%. [hill disk l1.ilu res dit not occur inl 0IIS %khile thie recow ry mianager is

inl 11he Midst of* Certi king" tile object headrs, thle ohjcct header table ill be completely valid

aft.r thle tCcovl )'\ ii ailager bias JIM&a one scail tlrOligh aill ob ob\S upJ to tile limliting CEM.
Ihfils. it canl signal all pli ccsws that ire still ii aiting Iir ir st object headers to be crti lied

a11lte it c. nl"CICS OLi iNscail d ille 11i" IwOCSSes \\ ill o rUCtl) yC0 mCI tid that tie Object

leaerscorcsp ndto bje istha iiCiedeleted.

1b c c.there is a pit tli %i iii dii reaisoning due: to the bI'ct that diA Filuhres are not

',Wit ri Ie~d 0 ils and L',11 Iccur ,n time. Miull v en thle repoisitory detects a dlisk

1b11iilic (had pagec) ill Of) I.S. it Cr-JAhes jIVLIb' ad restartill J1(I' its recmaNi mlechanlismls sinice

)I IS i11m no lunger be coninI"I~l\ iih \ S. Buit \iI t ile icc(%el. imilaae r is certiFying all

it (tie (0bjcct hicadcrs. tife rept )sittn canin i dter-Iminek ii tier ahad pagew is thec result ob' a

dlisk I"diltic tu tin %% hidh thie relposilmr) is presenti) ricoi cling om- liethler at subsequetit disk

hinjure iecucd. I herebor-e. thle iL'positor dIoes not1 CiAl itself* ii' it eclkounters ai bad page

In ()I IS 11,111 rcuml miawer is ,till cci lily im! O th jc headers.

I his mevans. that1 thle recoi cry manager can no longer sinksignal an I)Iocs that are

still \i iling 101r lost o)bject heiars.01cte it ctmipletes its initial search through V'S. since any

ti these primesscs ci mid he ;aitimg lhr ;in oblject header thait is on A disk page. that was

dest ii ed hN a disk f'liilmire that (1kc rd alter tile rccocr eimiin ager c.c itlifed that o~bject

hevader. Ilii us. ii' (anld m by1 it) there aire N ill pi-m-csses %%aiiing fi r It ist oibject headers to be-

curtilied alter the recomer manager makes its initial scan through \S. then the recovery

mianiager imust recheck tile tibjcct heaiders Ih r all ol thle enurrent (hjccts. [hatl is. it must

cheek the o~bject hecaders that ci-respond to the checkpoint entries upt to the limiting CIAM.

I hen,. if' aill of, the object hecaders are still valid(. thle recovecry manager canl signal anly

;wt(cce thut are still waiting. H-by c r. if' thle reco~ cry m1anlager enco ilitercls a bad disk

page in OIlS during this sc( md scan, then thle repository "~ill crash itself and restart its

recovery mlechianismis so) that it can. once again, restore consistency between MIS anid VS.

I urtlierniore the repository will crash itsell'il' any repository process enicounlters a bad 01 IS

page after the recovery manager makes its initial scain through VS.
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Thius, the portion of VS through which thle reco-ery manager may have to scan while the

repository is servicing external requests. depends uipon the cxtcnit of the damage that is done

to OfIS. First. if no object headers are lost then thle recoveryN imanager only, has to search

through the non-crash recovery epoch that precedes the most recent crash recomcry epoch.

Second. if sonmc object headers are lost, then thle recovery manager has to scan through to

the limiting (FM. Finially, if somlc process tries to access an ob~ject hecader im an OfIS page

that has gone bad since thle r-c c)'crv mnanagecr r-cco~ ered that o)bject hicadcr. or[ tries to access

a non-e\istent or prev.iously deleted object header. then the recow cr manager imi. only has

to search throughl to tie limiting ('FM. bilt also nilist reaccess all tlie checkpoint ciltries Ill)

to that limiting CFM (in order to recheck their corresponding objcct hicadcrs).

4.4 Justification for Lack of Recovery of Pending Messages

Since all dlata describing thle pending messages is kept in mliti Ic stcwage. Mihen the

repository restarts fter a crash, all thnis data is lost culd thle reCpOSI[ It S leh \\ith IM) vCalI of

the prior slate of these messages. I lowever. the inept sim- tcrIdtCS il)t lhct: t m ciMA her thie

prior state of' pending mnessagecs sine it does not t con tinuei t p Ii(cess these a es gsfrom

where it left oft at the timec of the crash. Instead. 1ipt m) restart i rig, it accepts mew melssages

and starts from scratch.

Now, that all of the rcpository s recovery mechanisms have Nen dcscribcd inl detail. it is

pt)ssihlc to e~ pi in %%hy the repository) dIoes 110t lhave t0 C\pl ic'it tI ree )C its pIInding

messages after a crash. Ikisically,. there arc three rc asons. First. sine the rept sit wy sa"tisfies

all requests atomically, no data %ill remiaini partialy mod),ified. Ihe (data will either he

completely m di fled or nc t miodiftied at all. Second. si ne the protocols include pro- isionls

fot any- o'mnimmicaliomis errors that might owcur. both the sender and recci~er of' tile

message know ecacthy lb )w to react Mhen an) ()I these errtcrs (ocmu . I inaly . sine all

repository, reqhuests arc rcpeatable. as demoncst rated ii tline tabhle iii I iLgn re 4-23,

retransmissions do not cauise thie Sanie Il(di ticat itl )n be done twice( toi lie same data.

The Ibllowing eCXIll)he, inl which thle co nsequenices of nti)t rec cring aI u iliI pPacket
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1 Create-Object: In order to decide whether or not a create-object request is a
retransmission. the repository would have to search through VS for a version that

contains the same pseudotime and commit record id as those named in the
request. However, this is totally unnecessary. since the original request was
unconfirmed the requestor does not have the oid and cannot access the object
that the repository oririnafly created. rheieore. for all intents and purposes the
object still does not exist, so the repository can create a new object when it
receives a retraransmitted create-object request in the same way as if the request

was not a retransmission.

2. Delete-Object: If the object is already deleted when the request is received
then repository just confirms tie deletion. Otherwise, the deletion is performed.

3. Read-Vetsion: Does not moe ify data, so retransmission is confirmed in exactly
same way as original request.

,t. Create-token: When the repository receives the retransmission aild tries to
create the token it will find that a token already exists in the objeci history. It
checks whether or not the request is a retransmission by checking tile
pseudotime and commit record id of the token. If they are the same as the
pseudotime and commit record id named in the request then it knows that this
request is a retransmission arid has already been satisfied. The repository simply

confirms the creation of tile token. K

5. Test-Commit-Record: Game as Read-Version

6. Abort-Commit-Record: Once state of commit record is decided it is never
changed so repository wilt simply respond with the final state of the commit
record.

7. Commit-CommitRecord: Same as Abort-ComRec

8. Add-Reference: Repository will not add a representative version to a commit
record's rclerence list if that version is alread,1 on the list. Repository will simply
respond with confirmation that reference has been added.

9. State-Is: If the repository has not already encached the final state in the commit
record repiesentative then it does so. Then it returns a delete reference response
teven if the state had already been encached).

Figure 4-23: 1 landling o" Rctransmitcd Rcquests
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create-token request are dcscribcd. :;hotuld dimonstrate that these reasons are valid. Since a

create-token request may be left in one of fMinr inconsistent states after the repository

crashes. the example will consist of lour cxplanations. one for each possible state.

Stale 1: The repository only received the initial packet of the mcssage but had not yet

begun to process it. Furthermore. the reCpo)sitory did not send any response to the broker.

Since no data was modified, there are no inconsistencies in the rcpository s data.
Furthermore, since a confirmation was never sent to the broker, the SMIP module at the

broker's n)de will eventually time out and abort the mCSSlge. ill which p int the broker will

either abort the atomic action (send an abort-comm it-record request) or ret ransinit the

request. Subsequently. the repository will either start from scratch if the broker retransmits

the request, or will abort the commit record as usual, if the broker sends an abort commit-

record request.

Siate 2: The repository rccci\ed some or all ofthe packets but did not w rite all of the VS

pages containing the version. FurtherMOre. the reposito)ry did nt make the necessary

modifications to the object header table nor did it send any responsc to the broker.

In this case, the token still does not exist since the root version image. Miich is always

located on tile most curreilt VS page containing the token, was nc\er written. In addition,

the token is not linked into the commit record's list of tokens since the root version image is

the only version iliage oh' the token that contains the link. Furthernmire, since the object

header table was not modified. tile object header still points to the current version. During

recovery, the recovery manager will not change the object header to point to the partially

written token because it will not find a root version image and ignores the fragment version

images. Finally, since tile confirniation was not sent to the broker, the broker \ill either

abort the atomic action or retransmit the requtest and the repository will react ill the salie

way as was described for State 1.

Stale 3: 1 lhe repository received all l)ackcts and wrote all VS pagcs contmlining the token.

Thus. by definition, it also adlcd the token to the coimit record's li,;i. I lowever, it made

some or no modifications to the object header table aind did not send a respoinse to tile
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broker.

III this case. tile recovery manager \% ill e entuall$ update the object hcadcr to point to the

newly created token and the hash table algorithns \Nill restore consistency to the object

header table. Fu1rthermore. since 1o confirmation \as sent to the broker, the broker will

either abort tile atomic action or retransmIit the elate-token rcq uesi If the broker sends an

abort-comm it-rccord rCqUCSt. then the repo )Si tory aborts the coi mmit record (if it has not

already been aborted by the eCC)\Cl.\ ymn'ag "er) and conf'irmn1s the requcst. On the other

hand. it tihe broker retransmits tl! create-token req uest. then the folht ,wi ng sCeI[encc of

events occurs. Irst. the reposito)ry process that is handling the request accesses the

approlj)riate object header. If the rcmvcr manager has not yet rcowered the o )bject header,

then the process mIust \ait until tile recovery manager signals that the object header has

been cCIetified. Th1en, \Vhcn thC prtocCss reaccCsscs the object header it creates a token since

the recovery managcr deleted the existing one 14 and attempts to add the token to the

appropriate commit rccordl's list of versions. However. in attemting to add the token to the

commit record's list, the process discovers that the commit record has been aborted. Thus,

the process dclCtcs the token and sends a rejection reponse to the broker, specifying that the

commit record has been aborted. Subsequently, the broker will retry the entire atomic

action.

State 4: The repository received all packets and made all of the necessary modifications,

but did not send a con Iirmation to the broker.

The repository handles this state in the same way as it handles State 3.

Thus, it can be seen fron this example that all inconsistencies inl the repository's data

caused by partially processed crcate-loken requests are eliminated by the repository's

recovery ncchanismus. -Furthernore. the broker is not left hanging when the repository fails

to respond, since the SMp. request/response and atomic action protocols provide alternative

14When lil rcth e ,lV ma aeer recovers Ihe ohjcct heitcr tile commlnil ieco ird %%ill hae bccn ahorted. I h us.

the rcotcry manager detie [fie tokeln Ih was cleacd wheni the original create-token reqct "as received, by
changiig file ohect header's token relerenc to nil.
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modes of behavior. In fact, for all ypcs of messages thai may be sent it) the repository, the

conibination of tile repository's internal recovery mechanisins and the Swallow protocols

ensure that the global consistency of all clients' objects is restored.

4.5 Summary

Thus, the recovery mechanisms used to restore order within thc repository were

presented in this chapter. First it was shown how the structure of the object header table is

recovered implicitly. using a specii I set of hash table algorithms, instead of by perlorming

an exhaustive consistenc) check on the entire table structure right after a, crash. Next, it was

shown how th'e object headers themselves are recovered from the curreit versions in VS.

using the recovery and checkpoint epoch mechanisms in order to determine the need lbr

recovery and to bound Ihe linear searches through VS. Then. it was shown how commit

records are implicitly aborted if' their state "as not finalited bcfoie the repository crashed.

and how committed commit records are temp~orarily entered in the new commit record table

in order to speed recovery of the object headers. Finally. it was shomin how the recovery

manager restores the repository's global state as well as how the recovery nuinager

coordinates all of the recovery activities so that it only has to perform a single scan through

vs.
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Chapter Five

Evaluation of Recovery Mechanisms

ilhe ell'hcts of the recovery nechanisms on the performncc of the repository are

evaluated in this chapter. tlowexer, since the repositor has not yet been im lncntced

there are nf) real siatislics oin hox\ !ong it takes the repositor) to satisfy ti c karioaus types of

requests. Still, it is possible to estinate these time costs inl terms tf the number of

MI ndCrl) ing disk accesses that must be done in order to do rCcovery and tIL fill requieStS. This

is a aisclhli mcthod of analysis since these disk accesses are likely to be the most time

consuming tasks that the repository performs.

First. Sections 5.1 and 5.2. derive equations that calculate the total number of disk

accesses that the recovery and checkpoint managers. respectively. require per recovery

epoch. Next. Section 5.3. calctdwes the average cost of of these recovery mechanisns per

requcest. for a typical example. From this calculation it is possible to gain some insight into

how% much of the repository's response time can be attributed to the recovery mechanisms

and how sensitive these response timc costs of recovery are to the varying characteristics of

the requests and data sent to the repository. Finally, in order to put these calculations into

perspective. Section 5.4 compares the cost of the recovery mechanisms presented in this

thesis (fOr the repository) with an alternate set of recovery mechanisms that could have been

used. which are based upon OH1S being reusable stable storage.

5.1 Cost of Recovery Manager

The cost of the recovery manager includes the cost of updating State Storage and

encaching it in Volatile Storage as well as the cost of ccrtifying all of the object headers.

Since the significant cost is that of certifying the object headers, this cost will be analyzed in

detail, but firsl. a brief description of the other costs is given, as follows.
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Tlhe only noticable cost of recovering State Storage (with respect to disk accesses) is that

of restoring the VS write pointer, since the recovery manager has to search through some

nulmber of pages in VS in order to lind it. [his number depends upon how freiquently the

value of the VS write pointer is updated in State Storage: the more frequently the value of

the VS pointer is updated in State Storage. the fewer the number or VS pages through

"lhich the recovery manager must search after a crash will be. [lowever, State Storage

updates are fairly costly (in terms of disk accesses) and should not be done too often while

the repository has pCnding requests. Thus, a tradeoff must be mLadc. In the initial

implcmention of the repository. I.,- tradeoff 'will be made arbitrarily and then. once actual

costs can be measured. the parateCr tlht specilies the frequency of updlating the VS write

pointer in State Storage will be fine tuned for thc op1timtm tradeoff.

The remaining costs of restoring State Storage depend on its si/c and %%hat percentage of

it must be cncached in volatile storage. I lowever. since S atc Storage will be 1airly small

(less than one page), these costs should be insigoificant compared to the cost of recovering

the write pointer.

96



In order to derive an equation for the total cost of ccruil'ying all object headers in OHS

per crash, it is necessary to dLine thoilloing ariables:

C the cost of reading a VS page

C the cost of w riting a VS pageVW

C the cost o 1 reading an OI IS page
Or [

C the cost of \\ riting an OI IS page
OW

X = the nilber f 0n(1 I S page that have to heca.d in order t find a
particular )hbjel hadCr (usiog the hash table search algolithm)

P a\crage number o.'version images per VS page

1, probability that any object header will get lost during a cl cckpoint
epoch

M the RFM (beginning mark in VS) of the non-crash recovery epoch
fc that precedes the crash recovery epoch

M the limitilig CFM (i.e. the beginning of'the last terminated
Ce checkpoint epoch)

D the nIIumber of pages in thc portion of VS between M and M
re Ce

N the number of VS pages in the non-crash recovery epoch that
precedes the crash recovery epoch

I -- the numbcr of version imagecs per N
N

V the number of version images that are simple versions orN roots of strtucltured versions l~or objects per N

0 N the numiber ofdistinct objects for which there are version
N images contained within N

IF the nu1mber ol'checkpo, int entries per N
N
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I Dthe number of %ersionI imlages per 1)
D(I N <

V D = the n umber ofer-snin images that are simplc versions or
roots olkirutctured %cersions br objects per D

N <<V ))I

0) D the n umber ofidistinct objects iiii. which there are
I) eSli illlaIS COn tat nCL With in [)

(0 ((<<0D

IF fihe nlumber of chieckpoint entries per I)
(F tre tha hav been

At'- the ii imber ol'new check 11point eniesta aebe
I)created hcit% cen r-epository recstarlt lime and thle lime whenl thle

r~eco~c" er1 anagler linishecs its initial scanl through VS (LII) Lt) tile
limiting C'EM)

Using the abOVe deCf1iitions. thle hasic total cost. C . of thle recovery manager per crash
rm

assum/fing that no object headers are lost canl be specified:

Crnb Cvr IN /+ Cor (VN +EN ) -Cow 0N

'I'he terins of the equation can be explained as biollows. The first term inl thle Cquation

reflects the cost of reading and examining every version imiag, within N. Since tile recovery

manager scans sequentially through VS. it examines all of' the version images onl a single

p)age while that page is inl the buffer1. 1h us. thle cost Of examlinlingL thle version images is

reduced by a P factor due to the faict that thle rCcoveCry mana11,ger does nIot make a disk access

every time it examines a version imlage.

Thie second termn rep~resents the cost of reading thie object headerlcs corresponding to every

version image that is a simple or root version image of' an object. Or a chckpoint entry, in

order to check that the object headers are current. [h le cost of' reading an AIS page is

multiplied by X because ill order to find a part icurlar object hecader. the search alg( Wit imi

mu~st be exected onl the object header- table. wh ich might in %ol ye leading more th1an one

01-IS page if the object header being accessedI is onl a chain that crosses page ho uiulaies or
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'. aS da,1maged. Ilowexer. I'. %er' t'ew (it any chains in thle object h eader table %.% ill have these

F71properties sin1ce all of the buckets Onl a single chainl are almoist akv~a~ s Ikcated onl thle s.amle

page. IThus. thie value of X is so dlose to I that for all anlalyses inl diis chapter it will be

aSsumied to be 1.

,Fihe finial term repcesn its thle cost of' thle Of I S \\~ rites that must be dlone inl orderCI to up1date

ec Iry object header. [hI is termn accounts 1101 Oi I-) e object C hee beinfg Wx it tenl Once Since it

is assumled that thie rc i'er.i filanaer reachecs MI ref nel(~ thle repository Crashes again. 15

lTius. for anly rCco\ver-\ epochs 1,01. hicli this assluption is [lot trule. this term w\ill have to

he adjusted. 1Fur1thermlore. the cost ol' thle OHlS '.x rite inl this term is nnit multiplied by a

k'ior simlilar to X\ since tlie aecover inanawe ireains thle location of the o')ject hecader whIen]

it fir1st executes thle search algi. rit bin anld canlf ilfl i'M.ite the object hIee ill plce

%\ itl1Olt having to pe rI,0r111 the inse i6in algor-ithml.

Since objeet headers sometimes do get lost. C is not the at'cragc total cost of' thle
rrnh

recovery m1anlager per crash. Inl order to calculate this cost it is ncecssary to add to rtb

sonic percentage of' the cost of scanning b~etween NI anld M [h'lis percentage,I
re Ce

represents the probability that a crash will cause object headers to get lost. Thus. thle

axerage total cost. C . of thle recovery manager Per Crash is:

C ~C + LIC I /P i- XC (V ±E)+C 0 +
it rinh vr D) or D) 1) ow D

R(C +- XC )(I + AF 146
vr or D) 1)

In die factor multiplied by) L. all terms except ioi the starred term are costs that are

comparahle to thle costs in C rmib . '[le only difference is that thle scan through VS is done

1At objct hieader is ne cr \kue ri moiii re than onlce. ven if t Ihere is~ mlore thi ion(le \erion fl r hith object
koIiuictt 11 Ittiitc CwC F. t epod)l ill VS5. bciiise I )i( ail ohici ticaicr has hcui ceriicd it coiiaiiis a cilmit
RI %. I h, iccowr\c nuii docs not i\ c~ il\ m.ec ihclheders Ohaf contain cori-ent REIN's.

i6 1 tt hoyoilt [ie tetolailtdct of hli.. dlnat.iS. the r-CAtdcr catn assutruc ihlai aliv tWinl thai is nikcd Miltl an

;NlCi,,I. is itch udcd Ill i11C CO- Wi o i i thie \%orst c e.A weiv tiv\ prith:IilitY mm. ent as to mcl for tile icri
ii, h e rle'. nt.
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through the region bounded by M and M instead of through the non-crash recovery
ue c

epoch that precedes tile lates crash recovery epoch. Furthermore. tile starred ternm

represents the cost of rechecking (second scan through VS) all of the object headers for all

of the cuirrent objects. Recall that tile recovery, manager oly) does this if. after it initially

checks and certifies all of thc object headers. there still remain processes %waiting fihr lost

object headers to be recoered (see p~age 89). Oily if one or more 01IS disk pages dccaycd

or if some external request erroneCously SpcifiC ld an11~) for a) dClete6 Or 1101-eOiStenit

object will there be processes waitii1, after the iitial scan. Thlus. sincc both of these events

occur very rarely, this starred term %N ill not usually be calculated into the cost.

Thus. C is not only thle average, total ,.t of the recovery manager pe crash but is also

the average response time cost of the recovery manager per crash. Ir. other words, it

replresents thle cost of the work that the recover 111nat,11X must do0 inl thle kickgrOluud While

the repository is satisfyinig external requests. H owever. kcep ill minld that C is thle worst

case average cost, since thle repository may have idle periods inl %vlicli thle recovery manager

can do sonmc of' the object header certificationl. In Section 5.3 it wNill be shown hlow C

afrects thle average response time of a request.
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5.2 Cost of Checkpoinit Manlager

The1 sole cost of' thle checkpoint manager is that of' creating thle checkpoint tables. In

order to deiik all equLationl that specifies ti s cost per crash. somei additional variables mu11st

haIst be dine~ld ats lfOllows:

LI thie number olrclitckpoiaic entries inl thle talble fior (ie last
tel mimated dieck pi n L tpoch that co rrespond to objects that
%Cr'C 110t deletd ill that checkpoint epoch

11 tile nutmber.(A ochtck point eniries ill the table for1 tile last
ten n maed CII cpi nt epoi cIl tilt co rresponid to objects t lat
%\Cec kdLeI inl that Check poinlt ep)och

A() thle nium ber oile\ bjects that are cleated duiring the
avecrage checkpoint epoch

R th,- niumber 01, VS paL'es \% rittenl since thle lpre% ious crash

P alverage-1 ntlm1ber. of checkpoint entries per V'S page that
conitai ns at c.ast one checkpoint entry

Using these lie%y delinled variables and those defined in the previous section. thie

w~ere total cost. C of the checkpoint mnanager l)er crash can be specified:

C - [C (U-,10 + B)/iP + C AO 4- XC (U f- +1
cil vr c yr or

UJ/i + C LO[R/[)j
C MW

Since the updatemd chleckpoinit entries are grouped into bllocks that occupy at VS page,

thlereby eliminiatinig thle need to m- ite one VS page Im e cry check point table entry that is

written, the cost s of' the V'S page leads and writes of' these uipdated chieck poin[ entries are

decreased by at 1) factor. I lo% e~u e.sinice tile chckpoinlt enitries tor ne\I2 l OCLetd oIbjects
C

are w ritten as tile objects are created, it is not possible to grouip these dcckpoint ciltriei into

blocks on thle VS pages. 'I Iius. the cost ol the VS reads anid %% tiles of the fillA dIicck ptint

entry createdl for )tvery object is noit reduced by ill\ palecad ficto r.

The first two termis. C (U M-A M) l)/IP C ). t reflect [ihe co st of'cuiIi iug all of the
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checkpoint entries in the pi c% Ions checkpoint. epoch table. I hie third term. XC(or[(U +1- ).

reflects the cost of examhining the correspondinig object header Ior e cry checkpoint entry in

the previous table in order to obtain (lhe cen elt %ersio m or the object. 'I hie valute of'X in this

term is very close to 1. Ior thle same reason as was gi\ en in thle irc ions section. Fhe fourth

teriii. U/1) . reflects the cost of k% it ing an updated entry Ii r c\ cry check pointI entry that was

not deleted in thle previous checkpoint epch)l. ['lie 111,01 termIl. C A). refleccts the cost of

creating new checkpoin t enitries fbor iie'. ly created ob1jects. Ii his term docs no t iniclude thieK

cost Of' reading anl 11 IS page since that cost is attl 1i bi ted to the clecat ionm of the object.4

The multiplier, R/D. represcilts the niunmber of check pCoint epoc:hs that exist in VS per

Crash. Since checkpoint ep~ochs beai no rel'Itioliuslip to crash evC'entS. this riatio is ;un1ialblc. InI

other words, checkpoint epochis cani be created at an arhi trary rate. I h us. since it is

decsiriable to mni'li m the roposi(1S tolysrep0IIse timeI f10i rsatisfy'ing. req ntIs, thle dcIion

about when to create a new checckpoint epoch will probahl\ be made d\ namically by the

repository. It will not be a time dependentCI decision but inIsteadI \\ ill depenId 111po11 1) (thle

distance between the current enld of' VS and thle limiting CFM ). and nuponi the ex pected

usage of the repository.

The decision will depend upon 1) bcauIse thle smllerI 1) is. theC smallerCI thle Va1lues for I,

V 1). and 0 1)will be. In other words, thle f'aster new checkpoint ep)och:s are creCated, thle

smaller the total cost of the recovery mnamwer \\ ill be since thle recovery manager will have

flewer version imiages to emaninc in VS. Ne~ertheless. this \\ ill only dccrease the total

response lime cost if objecct headers get lost (InIc to thle crash,. since if' none1 arc lost then the

recovery manager does not scan1 all the \% ay to thie limiting CIA.

I lowever. there is a disadvantaLge to creat ing checkpoint epochs at a Clmt rate: as the rate

of' creation of chieckpoint ep ch1S increases, thle ratio. R/1). increrases, and the refbre. so does

the total cost of thie checkpoI"l nt man11ager per crashi recc cry cpl ocli. If tile Chickpoint

maniager does its work inl thle background \\hlilc thle rcpoCitorv is, sal isFyirw c\terilal requllests,

thle checkpoint epochs should not he createdL at a \CI) fast rae inc Sth1 ie chckp)oint IManager

\ill be sharing ihe disk i'esource; v, ith the processeCs that1 are hiandling thle e\ternal~l requests.

and thuLs. w ill increase thle reposito ry's respon se time, I uik ever, if tile repository has
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enough11 idle timeI SO 041t thle Checkpoint mianager can do most of its wvork during that time,

then checkpoint epochis can be created at a lfaster rate since the only, cost of the checkpoint

manager that will affecct the request response timie is that of creating checkpoint entries for

newly created objects.

Thu~s. thle repository decides to create a1 new% checkpoint epoch if either of the following

t'~m Si tuationls arise. First. if'the reposi tory expects to be idle for some time, the checkpoint

mana"Cer has fin ishied updatiln1 thle Ol table, and SOl ni ii m n umber of' new vcersions

have been Created inl the Cuirrent checkpoint epoch, then the reposito -y creates a new

chCckp)oinlt ep)och. Second. there -.s -)),II proba l oe maximum1111 diStanlce over. M iich it is

desirable tff the recover\ maznager o ever have to search (because of thelinme it takes to do

all of' ie necessary disk accesses), so if 1) reaches half of this maiil.the repositoiy

cr~eates a new checkpoint epoch)17 .1 hus. the repository creates new checkpoint epochis at the

Fastest ratIe Ithat optiniies the repository's timte Under all conditions.

The pa ramtieterIs Specifying thle maxmimutinme of 1) and the minimutm number of new

versioiis that should have been created in thle curr-ent checkpoint epoch will Ibe chosen

arbitrarily in the initial impleimentation of the repository. Then, once it is possible to

11masure thle aCtual Costs an1d response timecs of' the rep)ository, these parameters will be

adjusted.

17 rhe rewI,'m \n hv the mrii ijtl:llCC i., tllot hiN Imis o iin i uiher than the actual inaimun1 is hccause the
rcn(VeIN Ii iiI:ih'cI ha~s ill 'r hi i oh~, all lello 111C' m i r'iischeCkpainil epch) ill ldditioll to the
culln cu1t l. (thte tahie for [Ile cm rdult epoch 1', noit 0 iilphci 1iiiih [Ihle Cei 1( is teiintated).
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Since the repository will probably have a reasonable amount of idle time (at least in the

wee hours of the morning), the checkpoint mamager will do most of' its work at that time.

The only work that must be done while the rep, -itory is satislying requests is tile creation of

new object headers. Thus, the average response tirli cost. C of the checkpoint manager
cmr

per crash is:

C (C AO)(R/D)
cnir VW

One should observe that only a small pcrcentaLge of the total cost atually affects the

repository's response time.

5.3 Average Cost of Recovery Per Request

It would be use'ul no\\. to analyte howv much the recovery and checkpoint managers cost

per request that the repository processes because then we can analy/e low these managers

affect the repository's response tinie per request. First. it is nccessary to cxilcidlate the costs

of reading and writing VS and OHS pages.

The costs of VS page reads and vrites are:

C = 1 disk access i- [page recovery]*
vr

C 7z 4 disk access + [repeated diskaccescs]*
vw

Normally. only one disk access is done in order to read a VS page, since only one copy of

the page has to be read. However, if a bad VS page is encountered, thll there is an

additional cost, represented by the term [page reco\cry]. \\hiclh is the number of disk

accesses that must be done in order to reco\cr the p ac. Since the probability of disk pages

decaying is very small, this lerm will rarely be inIcludcd in the cost.

In order to write a VS page. at least 4 disk acccsscs must normally be made. i.e., a read

and write for each of the 2 copies o(f the pa.gc that are maintaincd. I low\ever, these 4 disk
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accesses represent thle iotail cost ol a VS write. i.e.. the total \\ork that must be done. Since

there will probably be t\\o dlevice perficinilug thle writes of both copies inl parallel, thc

respolne lili cost of a V'S w rite will only be 2 disk accesses. FurIthermorlle, onlly in the case

'lhere thle read back after a w rite indicates that the wNrite w\ as not done properly and has to

be repeated. \\ill thle icrnii [rveated disk acesses] become at comiponent cost of a VS page

write. Once againl. thle probahi I it\ o'f tile oigi nal \\ rite not succeeding is mliii imial.

Onl thle other hand. the co,-Its of 01]S reads and writes are:

C I: disk access

C or Idisk access

SIince (MIS is CMCarlIII (standaIrd disk) storage, each padge that is reCad or- W ittenI r'eqLir'es

only a single disk access. 8

Now, the averagze total cost of the recovery and checkpoint managers per request

(cxcludimg all starred terms) is:

(C + C )/Qz 1 /l1 +-V +E + 0
in itN N N N

141 /P +V +±E +01+

[R/DI5zxO f(2U - AO + 13)/P + U + B]}/Q
C

where Q =~ the total number of'requests satisfied per crash

Not tha i~ t he acttimi l cst of.iheo( l S read and '\%tl Copotions \%ill be ili ri' t o 1I 1,1111lldisk access

sincethe ~lS are te nt reid ( I nt) tout 111)tue i4 C Ci ii a reId ("meti) I, doiie. )itett.the page to
he 10dJ\i (wrtten) ill be loiid in:I pli im.ii' huller II~e i.i lcheihae al sbgte h euto
in costs % i be sn~iil.
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li Certile avcraoe fl's)oJZst' liI7e Cost Of the rCcoNver\ an1d checkpoinut imanagcrs per

rt(/L4(s is only:

~rit cnir N N IN D 1) 1)

X\)OR/1)]/Q

From l tis equion161 onIe Can1 observe hlON thle reCspon1se timeI dcla\ 1i at is 11t ri haCd to

reco~ cry f1luctuaites \\itlh thle vary 'ins" Cha ra- ctcr1istcs ofh di eq nests and 1ibjects, dilat are sent

to the repository. 01ne thing to I oticc is that III is response tir ne deka\ deercases its tlie

a\ crage: si/C o f the clients' Objects increse. Since the Ilrger, tire )bJects ale. thle Smaller thle

WaLIC o01' anIld V\k wi II e. \Aiotier thiiiie to notice Is that thle re~j ponSe tinlie delay

inlcrcascs %%ith the rate of ob)Iject creation, since thle 1ibster new objects aire reated. tilec larger

tile Walue Of AO will be.

Ihe foll-in example)I Will give the reader a better Feeling for M hat the actuail icsponlse

timie delay that is attributed to r-cmo cry per requnest Ii ight he. 11) cl ri a a rhitrr but

reasonable niumber Of req neIsts that i-igt be prIocessed and a reasonaleI numllber of objects

that might be valid w\ithinl aI single recovery epoch. % r\.r ate idcs cmn be ectrapolated

fo~r all of thle terms inl tile cost equnations. lThus. f'or tI is euanplc it N ill be ass ued that tile

repository processes 20.000 requests per crash and thlat 10.000 objects are current at anly

givenl timle. Th'le table inl Figure 5-1 shows thre distribution oif request t~ pes arlirong the

20,000 requests that are p)rocessed and thle taleI ill F ign're 5-2 shiows what ahires were

extraplola)ted 1101 thle variables Used inl tile equion1s.

Using these Values, ie average total cost of recovery per requnest \N ill be:

(C int+ C cnt)/Q =154110 disk accesscs/20000 requests

= .77 disk access'2/rcequest 9
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Amount
Type Processed

c~eate object 1000

delete-object 1000

create-token 5000

lead-version 5000

cieate comrec 2000

aboi t comrec 200

conrmit-cornrec 1750

add-ref 2000

delete-ref 2000

test 50

Figure 5-1: lequest Distribution

On the other hand, the average response time cost of recovery per rcquest will be:

(C + C )/Q = 2050 disk accesses/20000 requestsrmlt cnlr

= .1 disk accesses/request

Thus. in comparison with the average response time costs of processing read-version and

create-token requests, which are 2 disk accesses and 1.4 disk accesses, respectively, the

additional response time cost attributable to recovery in the normal case, .1 disk accesses, is

not very significant.

5.4 Comparative Cost of Another Type of Recovery

To put these costs of recovery into perspective, it is necessary to compare them with

similar costs of an alternate method of recovery for the repo:,tory. "[he repository using the

recovery mechanisms described in this thesis will be called R, and the alternative will be

called R . Bricfly, the design for R is to implement OHS as rcusable stable storage. In R
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Variable Value

ID 15000

PC 5

V !)500

ED  10000

0200

U 9000

B 1000

1000
RI.) 1

Pc 50
NN 10

vN  50

I N  35 ;

EN5

Figure 5-2: Extrapolated Values for Variables in Cost Equations

no request is confirmed until the appropriate changes are written into both OHS and VS.

Also, all changes made to OHS for a single request are written into 01-IS From the page

buffers in an atomic fashion and are not written until the necessary changes have been made

to VS.

Using this alternative design of the repository. it is possible to eliminate the checkpoint

manager since object headers will not get lost. Also, the recovery manager can be greatly

simplified due to the fact that in fulfilling a request, the repository does not change OHS

until VS is modified. Thus. if (he repository crashes betore updating any part of 01 IS, then

the request will not have been cofirfImed, 01 IS will reflect the current state of the data, and

the version(s) added to VS will be ignored since the object headers were not chamiged to

include them. In other words, object headers will not become obsolete so there is no need

for the recovery manager to search through VS in order to ekamine (lie versions and certify
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the corresp)ondingo object header's.

[herelfbre. tile only reCspon)si bilitN of'the recovery manager in R is to u pdate State Storage

belore tile rejpository rc'sLiI1s its normial activity. I lowever. since reco% cry or State Storage

is exactly (lthe sam i 16r both R and R . its cost witll not he included in thiis cornparative

anak sis. IFurthermore. fbr thiis analysis it is assu nled that tile only dirffeeces bectweenl tile

t~~o r-cposi ories are those itat haC e )eCnI deCscribed abo(Me. IM s. all other Co sts. sulch ats

those 1,01. Comnln icatlitis. jare ZISMuIMCL to bV (lhe same1 inl bo01h repositories and M ll not be

included in tINS analysis.

St iperhicially. it mlight appear as ii'Z R uses a more efficient method )lrreco~cirN H owever.

thle Cost or maintaining 01 IS as stable storage in R f~ar ott% ei-gs tlie (osts of' thle moref

explicit meco~ cry ntccltan isis used inl R. Iliis canl best be shlo\\ n. h) ci n a ri iv thle costs of

satisfy ing tile samle ty pes of' requests in both repo)sitor-ies (AddingO the average cost of' the

recovery m1chlanlismis per request to thle cost of satisI'ying requests in R).

In order. to conipare these costs. thle Costs Of reCading and \Nr1iting V'S and 01IS pages in R

mnust first be calcuilated. Since there is no difference in thle structure of VS f 6r R and R,

there is no irifrece inl thle costs of reading and wvriting thle VS pagcs for both repositories.

Therefbore. C and C will be used to represent the costs of' VS writes and reads for both
vw vr

repositories. (However. for all other costs. any symbols with a prime tmark addedI to themil

apply to R.

The costs of the 01HS read and write operations in R are greater than those same coosts in

R. These costs in R are:

C 2 disk accesses 4 [1 disk accessf
or

C' 4 disk accesses +- [repeated disk accesses]*
ow

Ani OfIS rcad in R Ireqires at least 2 disk accesses since 01IS is reusable stable storage. 19

19
Note that in R the cost ofa~n 01IIS read will prhk~b~jl he slighth. less than 2 dlisk accesses since the page

mighl he ton d in the hbtffer. lii .weve I since 01) IS ill R is stable storage. ait 01 IS page has to hie m in en to the
disk every timle it is nioi 1 hd. 'I hus.(C will itot he rcduccd at all.

ow
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Thuis, both cop)ies of azi OH-S page mnust be read and compared. since it is possible for both

copies of an OFIS page to be valid but different fronm one another (if the repository crashes

in between thle writes of the two copies). In this case, where both pages are alid buit

different, or in the case where one ot the pages is bad. one additional diAk access is required

in order to write tilc recovered copy of the p~age. 20

Onl the other hand. thle cost of thle 01IS write in R' requires 4 dfisk accesses bccanise two

Copies of' the page have to be written sequiential Il and eacti copy mu tst be read back in order

bo ensuire that the writes were dlone correcIk. I lowecver, the terml. (repeak d (Ilisk accesses] is

onlly inclded inl thle Cost if' onle Of theC reds (a eRC a wr'ite) indicates that thle \\ rite was not

done correctly anld has to be repeated.

Now that thle Underlying costs of' tile VS and 01 IS read an1d \\ rite )peraitiOnS inl R aIre

understood, it is possible to analyie thle Coml parativ\e costs of processing the samle type of'

request in the two different repositories. Iwo compariSOllS Will be done. one for a create-

token request and another Imr a crecate-object requeIst.2 The valuies from the example in
Section 5.3 will be used as the average costs of' recoveryN per request in R. [huis, .77 will be

used as the average total cost per request and .1 waIff he used as tile average response fimle

cost per request. In R . there is no addlitional cost of recovery per request that has to be

added into the cost of satisfying a request.

2 Note. i hal ill o ler to siml il' thishanalt sis. t he ( imvi) caise whei ac cli I cro s,,v pawc , le i un daries is ignored.
[bums. it aissumend [hilt all hukee inl Sing'le Chajit ale hillY Contained x tinl a single Page.

21 1 lie difference in cosis lbr reaid-versioii or dclctc ob ,ject retiuests is flie samte as Ir r create-tokeni requests.

ewleii tug tile individual Costs dihter. I Ii1iN. tile oiiipmiai alke awis tbr iliese two t\ pcs of' 1equests will 11o1
be (lone in this thesis.
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The average total cost of processing a create-token request (assuming that the token fits

on a single page) is as follows:

C cost of'creatc-tokcn request in R
crtkn

=C +C +(C /P)+
Of OW VW

averagc totil cost of recoery per request

3.57 disk accesses

C -- cost of create-token request in R

=C +C + (C /P)
or OW VW

= 6.80 disk accesses

-File total work that has to be done is less in R than in R . Furthrmore, there is an even

greater difference in the average response time costs. In order to obtain the response time

cost of satisfying a create-token request in R . tile total cost is reduced by half of the cost of

the VS page write, since there will most likely bc two devices performing the write and read

of both copies in parallel. Thus, the response time cost in R is 6.40 disk accesses. In R,

though. the total cost is not only reduced by 1/2 of the cost of the VS page write, but in

addition, is reduced by the decrease of.67 in the total recovery cost per request (from .77 to

.1 as described in Section 5.3) and by the cost ofthe OI IS page write (% hich is I disk access).

since the repository docsn't wait for OtIS page writes to complete before responding to

requests. TI[hs. the resulting response time cost of satisfying a create-token request in R is

1.5 disk accesses. This is a significant improvement over the cost of"6.40 disk accesses in R.
[vein for a given crash where object headers are lost. the average response time per request

would be 2.42. which is still much better than 6.40 for R.
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Next. in the case of a create-object request. the average lotal costs are:

C = cost of creatc-object request in R
crobj

C + C + (2C /P)+
or ow vw

average cost of recovery per request

4.37 disk accesses

Crob cost of create-( bject request in Rcr'obj

C' +C' +C /P
or OW VW

6.80 disk accesses

Thus. even though tile cost of creating .Ia objcct in R includCs tNo IimeICs the cost of

writing a VS page (a checkpoint entry has to be created fbr thc new b)l~jcct in addition to

writing the version). the total cost of creating an object in R is less than in R Also. there is

an even greater difference in the two response time costs since the cost in R drops to 1.90

disk accesses whereas it only drops to 6.40 disk accesscs in R.

Thus, in this example, both the total costs and the response time costs are less fbr each

request satisfied in R than in R . Even in a rare case where the recovcry manager has to

recheck all object hcaders and an additional 2.12 disk accesses must be added to '!'C costs

(the starred term in the total cost of the recovery manager, givcn on pagc 99). the costs are

less in R than in R . The response time cost of the create-object request, as well as both

types of costs of a create-token request are still significantly less in R than in R .

Note, that R is not as sensitive to the average siue of' the objects and the read-

version/crcate-tokcn ratio as R is. nor is it sensitive at all to the rate of' object creation, since

it does not include a recovery cost term. lowever, in R. undcr normal circtumstances

(% here no object hcadcrs are lost). the sensitivity of the response time 1o these variables is

still not cnough to make the recovery ncclanisms in R more clficient than those in R, witl

respect to response time.
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5.5 Summary

in summinary, it has been showni that Onl the average, although thle total cost of these

recoverv' mechanlismls is fadirly steel), the response time costs ol thcse recovery mnechanisms is

insignificant. [Io% ever, it is necessary to keep inl mind that these costs are a~ crages. TIhese

delays %%ill vary with thle requests. "I he initial req necsts that arrive after thle crash will

C\perIieC;IC muILch mo1re reCSp )I1SC timei delay, dtue to thle crash than the a~ erage delay costs.

Nevertheless, once thle reco',cry mlanager. comlpletes its scanl. no Su bsequent requnests

experienlce any extra dlay dute ito recoery. e\cept fotr create object requtc ;ts. \\hlich require

tha~t checkpoint entries be ci-catcd heibr thle response is sent. 2

It has also beenl shl\ 1 n that inl the examnple cm' i ronnment. these recovem ) mchaiinis are

miore efficient than] tho se Ilse( inl R . inl liw l)St aIll reCspcts (total an1d responIse timeI Costs Of

all1 types of requests). LenCt in thle absolute worst case v\ here unassignied or- deleted nlid's aIre

speciflied in requnests. R is more efficicui than R . It is probable. thotigh. that in an

environment where the repository is utili/ed very heamily, 24 hours a day. and wvhere thle

objects arc fairly large. thIa R would prov0ideC a mnore efficient storage service. Although thle

calculations are only valid b1r our one examnple, we have erred in a conservative direction

for thle example numrbers. InI general. the recovery cost will probably be less than that inl the

examplle.

Finally. if there is any bottleneck in these recovery miechainismis it will he the checkpoint

manag1,1er Sinlce it requI~ires at lot of work to be clone julst to prevent the worst case fromt being

intolerable. It may have to be mnade miore efficient if certain tinflavorable conlditions prevail.

2711 can hc arianied so that heck poirt en nIItrii nt v crealedt ohjects are %rim len on thle same Page as tile
%Cion oI f' til oIL hiCleo 11C1 h ei Ili wil ntt 01 IL C I he aiii dut ) ami humahte to rcc( very ti r tile creame-objcL
requesits
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Chapter Six

Conclusion

in this thesis, a coherent set of recov cry mccchan isiis t'or the S%\ allow repository was

presente~d. In order to sum tinjgs up). this 1-111al chapte r N1CIc leet hakOn tlie orkiial deCsignl

goails and then offeis suggestions fbi riher work.

6.1 Summary of Original Goals

Recall that thie most important goals were to cniitre that the reposi tory's dLaa is restored

to ail1 intecrnal ly consistent state and to support the global reeo~ er ivechan isms in order tO

ensure external consistency. The general strategy. used to ifllthis 12(1:! is to utlainlain all1 of'

the essential data ( repository's globvl1 state, vat ies o'ci ienis, objects and IState of' the Comntmit I-

records) in stable storage and to restore11 alluX ifiary' data Cront (his data ini sM1le storage.

Tims, before any auxiliary data is used in order to satisfy e.\ternal requests, it is always

compared with the stable storage data, either esplicitly (by scanning sequentialy through

VS) or implicitly (by comparing tile R I N's of' the repo si tory and the hjcti I icader), and is

brought uip to date. if necessary. Furtherimore. tio data is ex er released to e\tciil nodes

uintil the state of the corresponding commit record is kioh i to be comitited. thus.aiim

by and supporting the global recovery inechan isms.

The next goal was to provide mintimal disrupt ion to the ongoing activities inl thle oil cI

Swallow nodes by mitt mii ng tte imtmtediate recovers that has to be d]oie heb '(re the

repository can begin accepting requeists. 'Ilte stratvgy used here is, to restore tile VS write

pointer, thle reposi tory's IMN and tile last ii id sigzited (to anl o)Iect or coli ttit reco rd), then

to get thle check point itanage r started Front Micre it Ic It offl beli cue thle crash and finally, to

encce (lhe entire global state in vo lat iIe sic rage: aitd start acceptintg reqluests. 'I lie

remaining data, consinsg of the object header and comitmit rc cril ta lies, are recovered
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gtattaly dnnn thle c0l t)LI 111C dS th rpoitoiy\* norma 1 10it iCS. IhuLS. thle ilmniediate

,Co% Cry is tri% iljl.

Of' Course. C% enl thoyh! tile rep )Sitorv) beginls a1(CCpting req nests Ibfirly Soon after a crash.

there- ,till tlla be fnlerm dela\ inl retirnitiga teCSpt)nlse. Since fihe da,1a reCilired to ."atisfy the

req nest iil tae Cuit C r\ccmB-. Ill(\%ever. tiethird goal \\ as to ilii thiis e-spoulse timie

dca\ itrihntable, to few, mcrt I tIns, this !goal is iet b\ uisin nonl-cr-ash tecox er-\ epochis ill

a'ldliotl to cia;sh reo m\er\ epochs. inl oi-der to mlark the ka'd point inl V's Mihnil -S is

gnlaranlteed to be onlsistenit \\ il \W(ros iding" that n10 Object heCaders areOSt). I h1C1. if' thle
replo\itor l 1,(lcl idle proit %i ill onyh-ices1. to Scanii high a %ery simll

n-gl of' \ S belore' a1 eq neIst caP le satlisfied 11nd con FtrmedCL. I'Lirth( ri-ore. once that

6ewon Ot VS hIMS beenI scannedC. thecre \\ill he not additional response tline delay alttributable

to r-ecot er. Inl other words. all reqaeCStS will be sa1tiSfiedI at Rill speed.

6.2 Future Work

IThe first step that Should be taken. novN that the recovery mechanisms have beeti

designe~d. is 1o uIse these recovery mechanisnms inl thle repository. Once this is done. thle

repository's perliornlance can be ganged under variouis conditions. both normal and

stressfntl. so that all parameters can be line (fied.

The analysis inl Chapter 5 wars onIll\ intendedC to giVe a I'Ml for tile costs ol' recovery. A

better- analysis con id be made by nieasn ring and coimparnrg thle aetnal response time delays

of' requests ann i iing immedmiately after restarting and those arriving some time later.

Another intetest ing~ nicasturenient v% o ild be houm the length olf time inl whic lehe recovery

mnager performs its required sean through the norm-crash recovery epoch pre(ceinlg the

crash recovery epochl varies \\'ill] dil(htleels CISOFIositt nv utili/iationl. I heSe are- Only

examtples of (the %ariouls an lyses that can be done once acitual n1ISu remen1ts can be taketi.

Inl addIi tiotn. thle behavior patterns of' thie users can he monmuitored inl order to figumre oLit.

v hat thie weak.nesses of these mechanisms are. F-or example. itr the repository is more

heamil i tilined thtan CXpeCte(I. then thle clieckp int and rcc cry vp~w mcttechan isums may



require Modification. l-lo-,e~ci if the usage is as exp~ected. i.e., long lIeriods of' idle time

during the early morning hoursN and frequent short periods of idle timet thr[oulgh the rest Of

the day, then these mechanisms should wvork well.

Another interesting p~atternl to observe would be the ratio or retransmissions %S. abort-

commit-record requests that the repository receives after a crash. I f'this ratio heam il favors

retransmissions then it may be desirable to exp-lore methods for recovering commit records

whose final state had not been decided beforeC the crash. Other than 1au1111atiutlly aborting

them.

1: inally. new classes of' algorithms have been recently developed for hiash tables whose

size changes dynamiically. Ihese alorithm1s ma1,y be in1corpor0ated into a su bsequent

impllemientation of the object header table in the Swallow rep-ository. If so, then it will be

necessary to examine these algorithm for p~otential di fficultics that may be caused by

f'ailures and then to imodi fy them so that they can detect and correct any errors before these

errors wrieak havoc within the repository.

6.3 Generalizations

In a miore general sense. the techniqueIs uscd in the repository for reliably storing.

accessing and recovering the dlata may be applicable to other systems. F-or examp-le. in the

repository, critical dlata is maintained in stab~le storage vhile the optimi/ed mfap~pinlgs to this

data are maintained in careful storage. I Ihis type of' strategy lor st( riqig odata w'ould be uIseful

in any system that contains some data that cannot be lost. ']'ie only deterrent to Using this

strategy would be the expense of stable storage. [IbuLs. future11- work should be directed

towards reducinig the cost of the stable storage read andl write operations % ithout dlecreasing

the reliability of the storage. 23

In addition. the hash table algorithms deCvelopedC here may lead to convenient methods

23 In fim. if m lie sg ahte siorav'e opcrai ions c( ut (I he made su tH cict I), infex\pensivye. iI hen there woti Id be 11o nced

to have care hit storage, at all.
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for keeping database indic-es, sincc these algorithms are efficient and self-recovering. The

essential property of die hash tab~le that allo~ s these algorithms to use tri vial eriror detection

anld correction jprocedureS is thbat the hiash table does not have to be perfectly reliable. In

other words. it is acceptable to lose data inl thle halsh table. oice inl a While. Thuls. aIs long Is

thle hash table data can be eccoveied fr-om l)C rONcliable data sourNcs. if ncessar1y, then a

daltalbas s\steml c11n uSe theSe alg orithnb. thereby elimi nating thle need to check thle entire

structure of' thle table of' inldices, for po ten tial damage after a crash, since the hash table

algoritl1111 Iru o this chck imlplicitly.

Finlally, the notion of onllie recavery during the normal couirse of opcrations is one that

%on hI be e trelvh usefulI in ll comnputing en virionments. In order fbor on line recovery to

be Practical inl a1) given system. CIICaIp methods 111 detecting" thle need for recovery as well

as for implementing recovery must be dev eloped for that particular systemn.

Inl Conclusion. there is still work that has to be done in order to fine-tune andl perfct thle

rccovers\ mechanisms wvithin Ohe repository. Even so, these mechianisms can be generalized

and applied to other systems in ordier to improve the standard recovery pr'ocedures.
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